Рубрика «высокая производительность» - 158

Я занимаюсь созданием высоконагруженных приложений для биржевой торговли. Нагруженных как по объёму данных, так и по количеству пользователей и запросов. Естественно, что для таких приложений первостепенное значение имеет производительность, и, как следствие, тестирование оной.

Наблюдая со стороны это тестирование, я накопил некоторый объём информации, который, как я думаю, будет небезынтересен.

Камень 1-й. Коэффициент пересчёта

Тестирование таких приложений требует развёртывания целой сети тестовых машин. В итоге это приводит к образованию тестового кластера. Попытка развёртывания такого кластера на базе машин, физически стоящих в центре разработки, ведёт к созданию собственного датацентра со всеми издержками такого решения. Хорошей альтернативой стало использование решений типа Amazon Web Services.

Естественное желание сэкономить на аренде хостов или на покупке оборудования приводит к выбору таковых с заниженными относительно production инсталляции характеристиками. Заниженными в разы. И тут вступает в действие коэффициент пересчёта между синтетическими индексами производительности. Т.е. процессор в production будет в 2 раза быстрее, количество ядер будет в 4 раза больше, объём оперативной памяти будет в 6 раз больше, производительность дисковой подсистемы будет в 3,5 раза лучше, скорость сети будет в 100 раз больше. Сложим, поделим на количество показателей, умножим на некий поправочный коэффициент и получим коэффициент пересчёта, на который будем умножать результаты тестирования производительности. Можно придумать и более сложную формулу, например, назначить каждому показателю некий вес.

При ближайшем же рассмотрении такой подход оказывается пригодным лишь для подготовки тестовой сюиты для будущего тестирования на инсталляции, близкой к production, и на обнаружение самых очевидных проблем производительности. (Что уже достаточно много и важно.) Почему? Да потому хотя бы, что при таком подходе совершенно не учитывается эффект bottlenecks.Читать полностью »

В этой статье я расскажу о том, как загруженность шины данных влияет на масштабируемость (scalability) приложений. Под масштабируемостью мы будем понимать не только способность многопоточного приложения сокращать свое время выполнения по мере увеличения числа потоков. Мы также добавим сюда и способность однопоточного приложения, запущенного одновременно в несколько копий (instances), выполняться за тот же самый промежуток времени, что и одна копия. Хотя последний пример было бы правильнее охарактеризовать таким свойством как пропускная способность (throughput), так как он относится к «серверному» режиму запуска приложений. Т.е. это такой режим, при котором на сервере запускается однопоточное приложение, каждый раз когда к нему подключается новый клиент. Главная задача при разработке таких приложений — это снижение их зависимости от общих ресурсов, одним из которых может являться шина данных.
Читать полностью »

Математики из распределённого проекта по поиску простых чисел GIMPS объявили об обнаружении нового простого числа Мерсенна. Это важное событие для математического сообщества, потому что до сих пор было известно только 47 таких чисел, последнее было найдено в 2009 году.

48-е простое число Мерсенна — 257.885.161-1, с 17.425.170 десятичными разрядами. См. полную запись числа в текстовом формате (22,45 мегабайта).

Числа Мерсенна имеют вид 2n-1, где n — натуральное число. Простые числа Мерсенна являются самыми большими простыми числами, известными науке. Предыдущий мировой рекорд принадлежал числу 243.112.609-1, имеющему 12.978.189 десятичных разрядов.
Читать полностью »

Wholesale Electric вот уже более 60 лет является образцово-показательной компанией «страны возможностей», поставляя по всему миру широкую линейку продуктов для электроснабжения. Но так было не всегда. Едва ли основатели компании в далеком 1949 году могли даже мечтать о таком развитии событий. Об одной из причин, приведших их к успеху, мы бы хотели рассказать подкатом. Читать полностью »

В то время пока беспилотники заполоняют небо с неимоверной скоростью над полями сражений и университетскими кампусами, правительство Соединённых Штатов проявляет неподдельный интерес по оснащению таких аппаратов современными технологиями наблюдения. Последней из таких является разработка DAPRA — пугающий ARGUS-IS — записывающее устройство с массивом сенсоров в сумме дающим изображение в 1,8 гигапикселей; хватит, к примеру, на пол-Манхэттена. Новейшая разработка для постоянного наблюдения за обширными территориями может обнаруживать и отслеживать движущиеся объекты размером от 15 сантиметров на высотах до 6 километров.
Читать полностью »

Задача: в массиве длиной N найти элемент, который повторяется больше N/2 раз.

Казалось бы, чего тут думать? Возьмём Dictionary<значение элемента, число появлений>, за один проход по массиву сосчитаем появления каждого элемента, потом выберем из словаря искомый элемент. Решение за O(N), куда может быть ещё быстрее?
Поиск часто встречающихся элементов в массиве
Есть один нюанс: для словаря нам потребуется O(N) дополнительной памяти — в несколько раз больше размера исходного массива, и это при реализации словаря хоть хэш-таблицей, хоть деревом. Что будем делать, если наша цель — обработка сигнала неким устройством с маленькой памятью? Массив — замеры уровня сигнала, из которых один — «настоящий» передаваемый уровень, а остальные — шум и помехи. Неужели придётся для определения «настоящего» уровня возиться с хэш-таблицами и деревьями?

К счастью, нет: достаточно O(1) дополнительной памяти, и по-прежнему одного прохода по массиву. Читать полностью »

NUMизматика, NUMерология и просто о NUMANUMA (Non-Uniform Memory Access — «Неравномерный доступ к памяти» или Non-Uniform Memory Architecture — «Архитектура с неравномерной памятью») — технология совсем не новая. Я бы даже сказала, что совсем старая. То есть, в терминах музыкальных инструментов, это уже даже не баян, а, скорее, варган.
Но, несмотря на это, толковых статей, объясняющих, что это, а главное, как с этим эффективно работать, нет. Данный пост, исправляющий эту ситуацию, предназначен прежде всего для тех, кто ничего не знает про NUMA, но также содержит кое-что интересное и для знатоков-NUMизматов, а главное, он облегчает жизнь мне, инженеру Intel, так как отныне всех интересующихся NUMA русскоязычных разработчиков буду отсылать к нему.
Читать полностью »

По данным сайта Alexa.com, Traffic Rank сайта Mega.co.nz сегодня достиг отметки 141, оставив позади rapidshare.com и dropbox.com. Судя по динамике роста, Mega успеет войти в первую сотню крупнейших сайтов мира меньше, чем через неделю после запуска.

Через 5 дней после запуска файл хостинг Mega обошёл Rapidshare и Dropbox
Читать полностью »

API взаимодействия с memcached представлен во всех популярных языках, поэтому в задачах кэширования это наиболее используемый инструмент. В случае когда не требуется ничего кроме кэширования, видимо, — самый оправданный.
Одна из проблем с которой я столкнулся при работе с memcached — невозможность сбросить его состояние на диск. Существующие решения либо не являлись простым кэшом (представляя скорее БД), либо не были настолько же стабильны и поддерживаемы. Вдобавок имелось желание «покодить», поэтому какой-то из готовых вариантов я мог банально упустить.
Читать полностью »

Наверняка на хабре уже немало постов на эту тему. Тем не менее, я попытаюсь рассказать свою точку зрения на всё это…

Однажды я прочитал в интернете про троичную систему счисления и заинтересовался. Меня мучил вопрос, а нельзя использовать в основе компьютера симметричную троичную систему счисления (СС), и даже вдруг это увеличит производительность компьютера? Мне казалось, что это возможно, и я жаждал это проверить.

Информация:
Троичная система счисления — позиционная система счисления с целочисленным основанием, равным 3. Существует в двух вариантах: несимметричная и симметричная.
В несимметричной троичной системе счисления чаще применяются цифры {0,1,2}, а в симметричной троичной системе счисления знаки {−,0,+}, {−1,0,+1}.
У некоторых людей эта логика вызывает затруднения. Они говорят, например, приведите пример подобной логики в жизни.
Человек, немного подумавший над этой логикой поймет, что она более жизненна чем двоичная. Обычный пример троичной логики в жизни связан с постоянным током: ток движется в одну сторону, в другую сторону, его нет.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js