Рубрика «Вселенная» - 2

Почему E=mc² — это лишь половина описания происходящего - 1

Одним из наиболее глубоких открытий в физике стало самое известное уравнение Эйнштейна: E = mc². Проще говоря, оно гласит, что энергия равна массе объекта, умноженной на квадрат скорости света. Это простое на первый взгляд математическое соотношение таит в себе огромное количество физических смыслов, в том числе:

Космос лучше представлять себе как живой организм, а не как машину.

Почему законы физики никогда полностью не объяснят Вселенную - 1

Автор оригинала - профессор Эндрю Понтцен, автор книги "Вселенная в коробке: Новая космическая история" [The Universe in a Box: A New Cosmic History]

Читать полностью »

Вселенной на самом деле может быть не 13,8, а 26,7 миллиарда лет - 1

По крайней мере, благодаря телескопу Джеймса Уэбба, у нас есть этому определенные доказательства. Мы начали видеть галактики, которым гораздо больше лет, чем может быть объяснено стандартной космологической моделью. Они выглядят чересчур «современными». Но у некоторых ученых есть объяснение: мы неверно понимаем текущий возраст Вселенной. На самом деле она гораздо старше, чем мы думали раньше.Читать полностью »

image


Запущенный в космос телескоп «Джеймс Уэбб» оправдал все надежды астрономов и любителей космоса, и даже более. В частности, он позволил обнаружить множество кандидатов на самые удалённые галактики – а значит, и самые ранние галактики во Вселенной. Эти галактики интересны как для понимания эволюции этих космических структур, так и тем, что в них телескоп теоретически может разглядеть самые первые звёзды.Читать полностью »

Как выглядит край Вселенной? - 1


Несмотря на всё, что мы узнали о нашей Вселенной, многие экзистенциальные вопросы до сих пор остаются без ответа. Мы не знаем, конечна или бесконечна наша Вселенная; мы знаем только, что её физический размер должен быть больше той части, которую мы можем наблюдать. Мы не знаем, охватывает ли наша Вселенная всё существующее, или это лишь одна из многих Вселенных, составляющих мультивселенную. И мы остаёмся в неведении относительно того, что произошло на самых ранних стадиях всего: в первую крошечную долю секунды горячего Большого взрыва, поскольку у нас нет доказательств, необходимых для надёжных и подтверждённых выводов.

Но в одном мы уверены точно: у Вселенной есть край. Только не в пространстве, а во времени. Поскольку горячий Большой взрыв произошёл в известное, конечное время в прошлом — 13,8 миллиарда лет назад, с неопределённостью менее 1% — существует «край» того, как далеко мы можем видеть. Даже при скорости света, предельной космической скорости, существует фундаментальный предел того, как далеко назад мы можем заглянуть. Чем дальше мы смотрим, тем дальше назад во времени мы заглядываем. И вот что мы видим, приближаясь к краю Вселенной.
Читать полностью »

Матрица (1999)

Матрица (1999)

Я объясняю экспериментальные результаты проверки теоремы Белла супердетерминизмом. Далее я показываю, как такая Вселенная может возникнуть и быть совместимой с субъективным опытом свободы воли.

Предисловие

Как устроен этот мир, и в чем смысл жизни? Предопределена ли судьба, или мы имеем полный контроль над каждым поступком? Есть ли Бог? Эти вопросы будоражат философов испокон веков. Сравнительно недавно появилась красивая научная теория, способная все объяснить.

Читать полностью »

Действительно ли Вселенная фундаментально нестабильна? - 1


Существуют определённые свойства Вселенной, которые мы считаем самими собой разумеющимися, нравятся они нам или нет. Мы полагаем, что законы физики во всех точках пространства и во все моменты времени остаются такими же, какие они здесь и сейчас. Предполагается, что фундаментальные константы, описывающие различные физические свойства нашей Вселенной, действительно сохраняют одинаковое, постоянное значение в любое время и в любом месте. Тот факт, что Вселенная работает в согласии с этими предположениями — по крайней мере, в пределах наших наблюдений — вроде бы поддерживает эту точку зрения, накладывая сильные ограничения на возможности изменения этих аспектов реальности.

Везде и всегда там, где мы можем измерить фундаментальные физические свойства Вселенной, или сделать выводы о них, оказывается, что они не меняются во времени или пространстве: они одинаковы для всех. Но раньше во Вселенной происходили изменения: переходы от более высокоэнергетических состояний к более низкоэнергетическим. Некоторые состояния, спонтанно возникшие в высокоэнергетических условиях, уже не могли сохраняться при более низких энергиях, что делало их нестабильными. У нестабильных состояний есть одна общая черта: они распадаются. И в одном из самых неприятных озарений для нас оказалось, что ткань нашей Вселенной сама по себе может быть одной из таких нестабильных вещей. Вот что мы знаем сегодня о том, насколько опасно наше дальнейшее существование. Читать полностью »

Новая обсерватория поиска обитаемых миров сможет ответить на вопрос, одиноки ли мы во Вселенной - 1

Диаграмма экзопланет, открытых на конец 2017 года

Есть несколько вопросов, над которыми человечество всегда размышляло, но не могло удовлетворительно ответить, пока не появились соответствующие научные достижения. Такие вопросы, как «что такое Вселенная», «откуда она взялась», «как она стала такой» и «какова её конечная судьба» были с нами с незапамятных времён, но в XX и в XIX веках, благодаря невероятным достижениям в области физики и астрономии, наконец, получили исчерпывающие ответы. Однако, возможно, самый большой вопрос из всех – «Одиноки ли мы во Вселенной?» — остаётся без ответа.Читать полностью »

Что такое «белые дыры» и существуют ли они на самом деле? - 1


Законы физики говорят нам обо всех возможных явлениях и сущностях, которые в принципе могут появиться в нашей Вселенной — но только наблюдая, измеряя и экспериментируя с реальной Вселенной, мы можем определить, что может появиться на самом деле. Одним из самых первых следствий общей теории относительности Эйнштейна стала чёрная дыра: область пространства с таким количеством материи и энергии, собранных в одном месте, что из этого объёма ничто, даже свет, никогда не сможет выйти. Но у этого явления математически есть и противоположная сторона, обратная чёрной дыре: белая дыра, из которой материя и энергия будут спонтанно выходить.

Чёрные дыры, как показали многочисленные наблюдения, не только физически реальны, но и весьма многочисленны во Вселенной. А как насчёт белых дыр? Что это такое, и существуют ли они физически? В конце концов, это одно из самых захватывающих и необычных явлений, допустимых физикой. Давайте посмотрим на то, что мы знаем по этому поводу.Читать полностью »

Какой инопланетные астрономы увидели бы Землю - 1

Когда вы смотрите на какой-либо объект Вселенной, вы не видите его таким, какой он есть в момент наблюдения. Скорость света, несмотря на то, что это самая высокая скорость, с которой любой сигнал может распространяться по Вселенной, всё же конечна. Неважно, насколько близко или далеко находится объект — вы видите его только таким, каким он был определённое количество времени назад: в тот момент, когда наблюдаемый вам объект излучал (или отражал) свет. Тот факт, что свет должен преодолеть пространство от изучаемого объекта до наблюдателя, порождает пробел в знаниях об этом объекте, заполнить который можно только путём умозаключений.

Каждый наблюдатель во Вселенной, если только он не провёл большое количество времени, путешествуя со скоростью, близкой к скорости света (или не находился в чрезвычайно сильном гравитационном поле, например за горизонтом событий чёрной дыры), будет воспринимать «прямо сейчас» как один и тот же момент времени относительно Большого взрыва: с этого события прошло 13,8 миллиарда лет. Для близко расположенных объектов скорость света достаточно велика, чтобы разницей во времени между источником и наблюдателем в большинстве случаев можно было пренебречь. Но чем дальше мы смотрим, тем дальше назад во времени, и тем ближе к моменту Большого взрыва мы заглядываем.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js