Рубрика «Вселенная» - 16

Как бы вы рассказали историю Вселенной 8-10 летнему ребёнку?

Чтобы начать, начните.
— Уильям Вордсворт

Большой взрыв – одно из величайших научных достижений XX века. Сложно представить, но году в 1900-м мы считали, что вся Вселенная – всё, что существует – состоит из нашего Млечного пути и звёзд, планет и туманностей внутри него, и всё это подчиняется ньютоновскому закону гравитации.

Теория Большого взрыва для детей - 1

Как далеко мы продвинулись за столь короткое время! Большинство из нас слышало с ранних лет, что Вселенная возникла из Большого взрыва, и хотя такое название легко запомнить, кто из нас знает, как объяснить это явление детям, задающим о нём вопросы? В конце концов, большинство из нас с трудом его понимает, учитывая, какая это обескураживающая концепция!
Читать полностью »

Мы знаем, что возраст Вселенной составляет 13,8 миллиардов лет, но размер наблюдаемой Вселенной при этом – 46 миллиардов световых лет. Как это возможно?

Природа требует, чтобы мы не превышали скорость света. Всё остальноё опционально.
— Роберт Бролт

Одно из самых удивительных открытий XX века произошло благодаря изучению огромных спиральных туманностей, рассыпанных по ночному небу.

Как получилось, что размер Вселенной больше её возраста? - 1

Быстро выяснилось, что эти объекты – галактики, похожие на наш Млечный путь, находящиеся в тысячах световых лет от нас. Кроме того, большая их часть двигается по направлению от нас. Что ещё более интересно, так это то, что чем дальше от нас галактика, тем (в среднем) она быстрее удаляется. Всего через несколько лед были открыты и механизм и закон, управляющие этим явлением.
Читать полностью »

Если наши "стандартные свечи" окажутся не очень стандартными, останется ли тёмная энергия?

Спросите Итана №83: что, если тёмная энергия не настоящая? - 1

Одни: «Мир кончится в огне!»
-«Нет, — сгубит лёд!»
Коль страсти пыл известен мне,
Я б предпочёл гореть в огне.
Но если дважды гибель ждёт,
Сколь хрупок мир, могу понять,
Познавши ненависти лёд:
Чтоб мир сломать
И лёд сойдёт.
— Роберт Фрост

Периодически в науке происходят потрясающие открытия, навсегда меняющие наше представление о Вселенной. В конце 1990-х наблюдения удалённых сверхновых чётко показали, что Вселенная не просто расширяется, но что удалённые галактики увеличивают скорость убегания от нас. Это открытие, удостоенное Нобелевской премии, рассказало нам о судьбе нашей Вселенной. Но среди ваших вопросов на этой неделе есть вопрос от Жуана Карлоса, упомянувшего новое исследование, и задавшего вопрос по его поводу:

Я тут прочитал статью на Eurekalert и подумал, что и вам тоже нужно её прочесть. Не могу дождаться ваших комментариев о ней.

Статья была написана по пресс-релизу Аризонского университета – я был там постдоком всего несколько лет назад. В ней говорится следующее:
Читать полностью »

Они обнаружили, что в свете можно нуждаться так же, как в еде.
— Стивен Кинг

Самая маленькая чёрная дыра во Вселенной - 1

Когда вы смотрите вверх и проникаете в глубины ночного неба, вы сразу же вспоминаете о том, что существует целая Вселенная, полная чудес. Но в дополнение к метеорам, планетам, звёздам, туманностям и галактикам, освещающим Вселенную, есть и другие формы материи, полностью невидимые нашему глазу.

Самая маленькая чёрная дыра во Вселенной - 2

И я не говорю про холодный газ и пыль, незаметные в видимом диапазоне. Эти предметы сделаны из тех же строительных кирпичиков – протонов, нейтронов, электронов – что и мы. И хотя они могут и не испускать (и даже не поглощать) видимый свет, если мы будем наблюдать на нужных длинах волн, мы и их увидим.

Когда мы направляем лучшие обсерватории на «тёмные» полосы пыли, расположенные по направлению к центру Галактики, вот что мы видим:
Читать полностью »

Опыт человека показывает, что нельзя быстро выйти на свет. Нужно пройти через сумерки в проявляющийся день до того, как наступит полдень, и солнце зальёт ландшафт.
— Вудро Вильсон

Мы знаем, как формируется большинство чёрных дыр во Вселенной: после смерти массивных звёзд (от 20 солнечных масс и более), появляются чёрные дыры массой от трёх солнечных. Такие звёзды сжигают содержащееся в ядре горючее быстрее других – всего лишь за несколько миллионов лет – и когда ядро уже не может гореть, они коллапсируют. И ничто внутри звёзд, ни атомы, ни ядра, ни кварки с глюонами, не могут устоять перед гравитационным коллапсом, если в звезде было достаточно массы!

Когда звезда достигает массы в 100 солнечных, в её недрах начинают твориться очень странные вещи. В частности, внутреннее ядро звезды разогревается так сильно, что ощутимая часть фотонов достигает энергии, превышающей 511 КэВ, важный энергетический порог. Он достаточно большой для того, чтобы два сталкивающихся фотона могли спонтанно породить электрон-позитронную пару!
Читать полностью »

И если да, то как с этим справляются теории относительности Эйнштейна, специальная и общая?

Спросите Итана №80: может ли пространство расширяться быстрее скорости света? - 1

Если вам кажется, что всё под контролем – вы едете слишком медленно.
Марио Андретти

Конец недели означает, что я снова выбираю вопрос из присланных вами, и на этой неделе нам повезло получить вопрос, напрягающий разум и искривляющий пространство и время. Читатель хочет узнать побольше о величайшей загадке расширяющейся Вселенной, относительности и тёмной энергии:

Хорошо известно, что вселенная расширяется с ускорением. Возможно ли, чтобы скорость расширения превысила скорость света? И если да, не будет ли это противоречить теориям Эйнштейна?

Начнём с того, что такое скорость света.

Неважно, где вы находитесь и кто вы, существует жёсткое ограничение на ваше движение в пространстве. Можно было бы решить, что чем больше энергии тратишь, тем быстрее можно двигаться… И хотя это так и есть, но это может продолжаться лишь до определённого предела. Если вы двигаетесь со скоростью несколько метров в секунду, или несколько километров в час, или даже несколько километров в секунду, как двигается Земля по орбите Солнца, вы даже не заметите ограничений на движение с бесконечной скоростью.
Читать полностью »

Наблюдаемая Вселенная

Минимальный размер Вселенной - 1

Говоря о нашей Вселенной, мы различаем «Вселенную» и «наблюдаемую Вселенную». Последнее включает лишь то, что мы можем видеть. Я не имею в виду, что у нас есть технология, чтобы реально «видеть» всю наблюдаемую вселенную. Я имею в виду под «наблюдаемыми» все объекты, свет от которых в принципе мог дойти до нас, учитывая время жизни Вселенной, скорость света и историю и будущее расширения Вселенной. Возраст Вселенной составляет 13,8 миллиардов лет. Из-за конечности скорости света мы не можем видеть то, что расположено от нас настолько далеко, что свету на путешествие до нас потребовалось бы больше времени, чем существует Вселенная. Это не технологическое ограничение – это ограничение того, существует ли в принципе тот свет, который мы могли бы увидеть, будь у нас в распоряжении любая технология.

Когда мы смотрим на окраины наблюдаемой Вселенной, мы смотрим в прошлое. Если свету потребовалось 13,7 миллиарда лет, чтобы дойти до нас, значит, мы видим Вселенную такой, какой она была 13,7 миллиарда лет назад, а не такой, какая она сейчас.

В целом Вселенная, возможно, бесконечна. Заявить это просто, но эту концепцию очень сложно представить, если подумать. Одним из решений этой проблемы можно назвать предложение не заморачиваться этим. Если вы задаёте себе вопросы типа «как она может расширяться, если она бесконечна», вы неправильно представляете себе бесконечность. Бесконечность – это концепция, а не число.

Однако Вселенной не обязательно быть бесконечной. Согласно ОТО, существуют и другие возможности. Я разделю их на две категории, но поговорим мы подробно только об одной из них.
Читать полностью »

Как квантовые пары сшивают пространство-время

Квантовая ткань пространства-времени: сеть-гобелен - 1

Первая часть

Брайан Свингл изучал физику в аспирантуре Массачусетского технологического института, когда он решил сходить на парочку занятий по теории струн, чтобы усовершенствовать своё образование – как он сам вспоминает, по принципу «почему бы и нет» – хотя изначально он не обращал внимания на концепции, с которыми он познакомился на этом курсе. Но погружаясь глубже, он начал замечать неожиданные связи с его собственной работой, в которой он использовал т.н. тензорные сети для предсказания свойств экзотических материалов и подход к физике чёрных дыр и квантовой гравитации, взятый из теории струн. «Я понял, что происходит нечто удивительное»,- говорит он.

Тензоры периодически неожиданно возникают в разных областях физики – это математические объекты, которые могут представлять множество чисел сразу. К примеру, вектор скорости – это простейший тензор: он включает как скорость, так и направление. Более сложные тензоры, связанные в сети, можно использовать для упрощения подсчетов для сложных систем, составленных из множества взаимодействующих частей – включая замысловатые взаимодействия огромного количества субатомных частиц, составляющих материю.
Читать полностью »

Вчера мой добрый друг Брайан написал прекрасный комментарий об исследованиях космоса, в котором он описывает экономический эффект, оказываемый космическими исследованиями на экономику, а также на наши знания и понимание Земли, её окружения и возможности предотвращения угроз. И для изучения Солнечной системы и других систем это действительно прекрасно.

Но чем бы нам заняться до этого? Ведь это не то, что изучаю я. Поэтому я спросил:

Практические аргументы за освоение космоса содержат довольно много воды. Но если следовать их логике, то то, чем я занимаюсь – поиски тёмной материи, исследование тёмной энергии, процессов формирования звёзд, судьбы и рождения и эволюции Вселенной – совершенно бесполезные вещи. Конечно, понимание Вселенной приносит понимание нашей роли и нашего места в ней, но есть ли практическое применение этим знаниям и разным областям, с нами не связанными?

И я начал думать – существует ли в долгосрочной перспективе практическая польза от изучения тёмной материи? Ну, самым эффективным и доступным, по количеству материи, методом получения энергии является ядерный синтез – этот процесс происходит, в частности, на Солнце. 4 ядра водорода сливаются в одно ядро гелия и испускают 25 МэВ энергии на каждое ядро гелия. Эффективность процесса составляет 0,7%: такой процент от килограмма водорода, участвующего в синтезе, становится чистой энергией. А есть что-либо более эффективное? Конечно: если столкнуть ядро водорода (также известное, как протон) с его античастицей (антипротоном), реакция будет на 100% эффективной!

Есть ли у тёмной материи практическое применение? - 1
Читать полностью »

С начала времён люди мечтали уничтожить Солнце
— Ч.М.Бёрнс

Но зачем же останавливаться на Солнце? Вчера был День Земли, и я решил, что будет подходяще провести сегодняшний день за рассказом о том, как уничтожить не только Землю, а, по сути, всю Вселенную целиком. Для этого нам нужно отправиться в самое начало, в момент перед самым Большим взрывом.

Большой взрыв произошёл, когда Вселенная была горячей, плотной, полной энергии и очень быстро расширялась. Также Вселенная была пространственно гладкой, с повсеместно одинаковой температурой, и полной материи и антиматерии. Выглядеть она могла примерно так:

Как уничтожить Вселенную - 1

Но штука в том, что нам нужно нечто, что приведёт Вселенную в такое состояние; нечто, что запустит Большой взрыв. Что делает Вселенную гладкой? Что принуждает температуру во Вселенной быть везде одинаковой? Что создаёт флюктуации, благодаря которым посредством гравитационного коллапса формируются звёзды, галактики и кластеры? Что расталкивает все те странные штуки, которые могли существовать до Большого взрыва?

Как уничтожить Вселенную - 2

Лучшая теория – это космическая инфляция, которая говорит, что Вселенная прошла через период, когда пространство расширялось с экспоненциально растущей скоростью. Это расширение расталкивает всё сущее, устраняя его из того, что мы знаем, как наша Вселенная. Оно берёт ту форму пространства, которая у него была, и разравнивает его. Оно берёт небольшую однородную область и растягивает её, давая каждой точке Вселенной одну температуру. И она берёт крохотные флюктуации квантового масштаба и растягивает их по всей Вселенной, создавая флюктуации, позволяющие формироваться звёздам, галактикам и кластерам. Оно даже дало верные предсказания амплитуде и спектру этих флюктуаций за десять лет до того, как мы смогли их измерить!
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js