Всем привет! На связи команда ad-hoc аналитики X5 Tech. Если вы уже знакомы с нашими статьями, то наверняка знаете, что нашей ключевой темой является А/Б тестирование. Важной составляющей А/Б теста является дизайн: для успешного проведения эксперимента необходимо оценить размер тестовой и контрольной групп, зафиксировав предварительно ожидаемый эффект. Но возникает вопрос: как убедиться в обоснованности гипотезы и рассчитать ожидаемые эффекты от инициативы?
Рубрика «временные ряды»
Эконометрика в ритейле: как не потратить миллионы на заведомо неэффективные эксперименты
2025-01-16 в 13:08, admin, рубрики: data science, time series, АБ-тесты, анализ данных, аналитика, временные ряды, коинтеграция, статистика, эконометрика, эконометрика в ритейлеChronos от Amazon: революция в обработке временных рядов. Часть 2
2024-12-06 в 6:00, admin, рубрики: artificial intelligence, Chronos, data science, llm, machine learning, natural language processing, time series, временные ряды, искусственный интеллект, машинное обучениеИтак, друзья, продолжаем тему прогнозирования временных рядов с помощью Chronos.
Напомню, что Chronos это фреймворк от компании Amazon — простой, но эффективный фрэймворк для предобученных вероятностных моделей временных рядов.
Неувядающая классика или «чёрный ящик»: кто кого в битве за прогноз. Глава вторая. Продолжение
2024-11-01 в 17:26, admin, рубрики: python, временные ряды, глубокое обучение, прогнозирование, статистикаВ прошлой части мы с вами остановились на том, что обнаружили у временного ряда с температурой две сезонности и, несмотря на это, решили двигаться дальше в выполнении сезонной модели САРПСС по методологии АРПСС. В этой части второй главы мы с вами продолжим применение методологии для поиска оптимальных параметров модели, которая будет адекватно описывать целевой временной ряд с температурой.
Немного про периодограммы временных рядов
2020-06-07 в 21:19, admin, рубрики: data mining, R, анализ данных, Анализ данных в R, временные ряды, графики и диаграммы, математикаПривет!
Сегодня хочу рассказать о периодограмме и одном из ее возможных применений в области анализа временных рядов. С ее помощью можно определять, насколько хорошо выделилась постоянная, сезонная и случайная составляющая, а также делать общие выводы о структуре временного ряда. В статье предлагаю посмотреть, как строится периодограмма и разобрать модельные и реальные примеры. Всем заинтересованным — добро пожаловать под кат.
Time series данные в реляционной СУБД. Расширения TimescaleDB и PipelineDB для PostgreSQL
2019-08-28 в 10:23, admin, рубрики: PipelineDB, postgresql, time series, time series database, timescaledb, Администрирование баз данных, Блог компании Конференции Олега Бунина (Онтико), визуализация данных, временные ряды, хранение данныхTime series данные или временные ряды — это данные, которые изменяются во времени. Котировки валют, телеметрия перемещения транспорта, статистика обращения к серверу или нагрузки на CPU — это time series данные. Чтобы их хранить требуются специфичные инструменты — темпоральные базы данных. Инструментов — десятки, например, InfluxDB или ClickHouse. Но даже у самых лучших решений для хранения временных рядов есть недостатки. Все time series хранилища низкоуровневые, подходят только для time series данных, а обкатка и внедрение в текущий стек — дорого и больно.
Но, если у вас стек PostgreSQL, то можете забыть о InfluxDB и всех остальных темпоральных БД. Ставите себе два расширения TimescaleDB и PipelineDB и храните, обрабатываете и проводите аналитику time series данных прямо в экосистеме PostgreSQL. Без внедрения сторонних решений, без недостатков темпоральных хранилищ и без проблем их обкатки. Что это за расширения, в чем их преимущества и возможности, расскажет Иван Муратов (binakot) — руководитель отдела разработки в «Первой Мониторинговой Компании».
Читать полностью »
Физика и экономика. Гносеологическая разница и ее проявление в IT
2019-07-21 в 17:54, admin, рубрики: бизнес-модели, временные ряды, модели, прогнозирование, физикаВ мир IT я пришел из теоретической физики. Занимался, в основном, экономическими задачами. Занимался – это: анализ, ТЗ, постановка, проектирование, программирование. Естественно, я все время сопоставлял физический и экономический подходы к познанию законов природы и экономики соответственно. По этой теме созрела некая точка зрения. О ней и будет речь.
Модель полиномиальной регрессии
2018-06-15 в 17:03, admin, рубрики: временные ряды, математика, математическая статистика, регрессияВыражаясь простым языком, модель регрессии в математической статистике строится на основе известных данных, в роли которых выступают пары чисел. Количество таких пар заранее определено. Если представить себе, что первое число в паре – это значение координаты , а второе –
, то множество таких пар чисел можно представить на плоскости в декартовой системе координат в виде множества точек. Данные пары чисел берутся не случайно. На практике, как правило, второе число зависит от первого. Построить регрессию – это значит подобрать такую линию (точнее, функцию), которая как можно точнее приближает к себе (аппроксимирует) множество вышесказанных точек.
Выбираем СУБД для хранения временных рядов
2017-05-22 в 13:43, admin, рубрики: nosql, Анализ и проектирование систем, Блог компании Конференции Олега Бунина (Онтико), временные ряды, высокая производительность, павел филонов, Разработка веб-сайтов, СУБД, метки: павел филоновПавел Филонов (Лаборатория Касперского)
Сегодня будем говорить о хранении временных рядов. Я постараюсь рассказать, какие подходы я применял для того, чтобы попытаться как можно больше своего субъективизма выкинуть, заменить его чем-то более объективным, а субъективный взгляд оставить где-нибудь в самом конце.
Читать полностью »
О линейной регрессии: байесовский подход к курсу рубля
2017-04-05 в 7:32, admin, рубрики: bayesian, data mining, jags, R, rjags, variable selection, анализ данных, Байес, временные ряды, всемирный заговор, курс, математика, машинное обучение, нефть, Программирование, регрессия, рубль, статистика, цены, эконометрика, метки: Временные ряды
Не секрет, что курс рубля напрямую зависит от стоимости нефти (и от кое-чего еще). Этот факт позволяет строить довольно интересные модели. В своей статье о линейной регрессии я коснулся некоторых вопросов, посвященных диагностике модели, а за кадром остался такой вопрос: есть ли более эффективная, но не слишком сложная альтернатива линейной регрессии? Традиционно используемый метод наименьших квадратов прост и понятен, но есть и другие подходы (не такие понятные).