Рубрика «векторная алгебра»

Введение

Ввиду того, что при решении задач оптимизации, дифференциальных игр, и в 2D и 3D расчётах, а вернее при написании софта, который проводит вычисления для их решения одними из наиболее часто выполняемых операций являются векторно-матричные преобразования типа $aX+bY$, где $a,b$ — скалярные значения, $X, Yin R^n$ — вектора или матрицы размерности $R^{ntimes m}$.
Собственно вот такие:
image
(источник).

Так, чтобы не углубляться в теорию оптимизации за примерами достаточно вспомнить формулу численного интегрирования Рунге-Кутты четвёртого порядка:

$Y_{n+1}=Y_n+frac{h}{6}(k_1 + 2 k_2 + 2 k_3+k_4),$

где $Y_i$ — очередное значение интегрируемой функции $f(t,Y)$ $h$ — шаг метода, а $k_i$, $i=1..4$ — значения интегрируемой функции в некоторых промежуточных точках — в общем случае векторах.

Как можно заметить основную массу математических операций как для векторов, так и для матриц составляют:

  • сложение и вычитание — более быстрые;
  • умножение и деление — более медленные.

О сложности вычислений хорошо написано в соответствующем курсе МФТИ.

Помимо этого, довольно существенные расходы при реализации векторных вычислений приходятся на операции управления памятью — создание и уничтожение массивов представляющих собой матрицы и вектора.

Соответственно есть смысл заняться снижением количества операций привносящих наибольшую сложность — умножения (математика) и операции управления памятью (алгоритмика).

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js