Всем привет! Меня зовут Роман Соломатин, я представляю команду AI-Run из X5 Tech, мы занимаемся генеративными сетями в целом и языковыми моделями в частности. Несколько месяцев назад русскоязычное сообщество разработчиков искусственного интеллекта получило инструмент для оценки моделей — бенчмарк ruMTEB (Massive Text Embedding Benchmark). Он предназначен для оценки репрезентации русскоязычных текстов и позволяет объективно сравнивать различные эмбеддинговые модели, которые превращают текст в вектора чисел, ориентированные на работу с русским языком (Читать полностью »
Рубрика «векторизация»
Нейронки «с нуля», или Как мы делали помощника для наших диспетчеров техподдержки
2020-07-23 в 8:55, admin, рубрики: Encog, nlp (natural language processing), service desk, Алгоритмы, Блог компании DataLine, векторизация, классификация, машинное обучение, нейронные сети, обучение с учителем, ПрограммированиеПривет! Меня зовут Александр Соловьев, я программист компании DataLine.
Хочу поделиться опытом внедрения модных нынче нейронных сетей в нашей компании. Все началось с того, что мы решили строить свой Service Desk. Зачем и почему именно свой, можно почитать моего коллегу Алексея Волкова (cface) тут.
Я же расскажу о недавнем новшестве в системе: нейросеть в помощь диспетчеру первой линии поддержки. Если интересно, добро пожаловать под кат.
Большой туториал по обработке спортивных данных на python
2020-05-02 в 20:42, admin, рубрики: pandas, python, анализ данных, векторизация, визуализация данных, Восстановление данных, парсинг сайтов, скраппинг, спорт, статистика
Последние пару лет в свободное время занимаюсь триатлоном. Этот вид спорта очень популярен во многих странах мира, в особенности в США, Австралии и Европе. В настоящее время набирает стремительную популярность в России и странах СНГ. Речь идет о вовлечении любителей, не профессионалов. В отличие от просто плавания в бассейне, катания на велосипеде и пробежек по утрам, триатлон подразумевает участие в соревнованиях и системной подготовке к ним, даже не будучи профессионалом. Наверняка среди ваших знакомых уже есть по крайней мере один “железный человек” или тот, кто планирует им стать. Массовость, разнообразие дистанций и условий, три вида спорта в одном – все это располагает к образованию большого количества данных. Каждый год в мире проходит несколько сотен соревнований по триатлону, в которых участвует несколько сотен тысяч желающих. Соревнования проводятся силами нескольких организаторов. Каждый из них, естественно, публикует результаты у себя. Но для спортсменов из России и некоторых стран СНГ, команда tristats.ru собирает все результаты в одном месте – на своем одноименном сайте. Это делает очень удобным поиск результатов, как своих, так и своих друзей и соперников, или даже своих кумиров. Но для меня это дало еще и возможность сделать анализ большого количества результатов программно. Результаты опубликиваны на трилайфе: почитать.
Это был мой первый проект подобного рода, потому как лишь недавно я начал заниматься анализом данных в принципе, а также использовать python. Поэтому хочу рассказать вам о техническом исполнении этой работы, тем более что в процессе то и дело всплывали различные нюансы, требующие иногда особого подхода. Здесь будет про скраппинг, парсинг, приведение типов и форматов, восстановление неполных данных, формирование репрезентативной выборки, визуализацию, векторизацию и даже параллельные вычисления.
Читать полностью »
Краеугольные камни уничтожения медленного кода в Wolfram Language: ускоряем код в десятки, сотни и тысячи раз
2019-11-08 в 15:01, admin, рубрики: CUDA, opencl, Wolfram, wolfram language, wolfram mathematica, абсолютная точность, Алгоритмы, ассоциативные массивы, Блог компании Wolfram Research, векторизация, вычисления, дебаг, компиляция, компиляция в c, машинная точность, мемоизация, оптимизация кода, отладка, плавающая запятая, правила замены, Программирование, распараллеливание, символьные вычисления, списки, точность, ускорение кода, функциональное программирование, хеш-таблицы, хэширование, шаблоныСкачать файл с кодом и данные можно в оригинале поста в моем блоге
Картинка к вебинару и посту взята не просто так: в определенном смысле символьное ядро Wolfram Language можно сравнить с Таносом — если бы его мощь была бы направлена в правильное русло, он мог бы стать самым мощным и полезным «добряком». Так же и с символьным ядром Wolfram — его чудовищную мощь нужно правильно использовать, а если это делать не так, оно может стать настоящим «злом», замедляющим все очень сильно. Начинающие разработчики не знают многих важнейших парадигм, идей и принципов языка Wolfram Language, пишут код, который на самом деле дико неэффективен и после этого разочаровываются, хотя тут нет вины Wolfram Language. Эту ситуацию призвана исправить эта статья.
Мне довелось работать с Wolfram Language начиная с (уже довольно далекого) 2005 года (тогда еще была версия Mathematica 5.2, сейчас уже 12-я). За эти почти 15 лет произошло очень много: добавились тысячи новых встроенных функций и областей, в которых они работают (машинное обучение, точная геометрия, работа с аудио, работа в вебе, облачные возможности, глубокая поддержка единиц измерения, интеграция с базами данных Wolfram|Alpha, географические вычисления, поддержка работы с CUDA, Python, распараллеливание операций и многое многое другое), появились новые сервисы — облако Wolfram Cloud, широко известная система вычислительных значeний Wolfram|Alpha, репозиторий функций, репозиторий нейросетей и пр.
Читать полностью »
Небольшой обзор SIMD в .NET-C#
2019-01-12 в 16:30, admin, рубрики: .net, C#, simd, Алгоритмы, векторизацияВашему вниманию предлагается небольшой обзор возможностей векторизации алгоритмов в .NET Framework и .NETCORE. Цель статьи познакомить с этими приёмами тех, кто их вообще не знал и показать, что .NET не сильно отстаёт от "настоящих, компилируемых" языков для нативной
разработки.
Михаил Бессмельцев с коллегой разработал новые алгоритмы для векторизации графики
2018-09-11 в 14:20, admin, рубрики: векторизация, Компьютерная анимация, математика, Михаил Бессмельцев, обработка изображений, оснащенное поле, Работа с векторной графикой, Софт
Слева направо: оригинал, оснащённое поле (frame field) и окончательный результат. На базе зашумлённого растрового изображение в оттенках серого вычисляется оснащённое поле, выровненное по линиям картинки. На острые углы типа X- и T-пересечений накладываются векторы по обоим направлениям. Затем из этого поля извлекается топология чертежа — и производится окончательная генерация векторных кривых
Векторизация изображений — основополагающий компонент рабочего процесса в графическом дизайне, технике и компьютерной анимации. Она преобразует черновые рисунки художников и дизайнеров в гладкие кривые, необходимые для редактирования.
Первые алгоритмы векторизации изображений появились в начале 1990-х годов и
использовались в инструментах для редактирования векторной графики, таких как Adobe Illustrator (Live Trace), CorelDRAW (PowerTRACE) и Inkscape. Несмотря на их широкое внедрение в промышленности, эти алгоритмы до сих пор страдают от серьёзных недостатков и находятся в активной разработке. В нескольких индустриях, где векторизация крайне необходима, включая традиционную анимацию и инженерное проектирование, она часто выполняется вручную. Дизайнеры кропотливо обводят отсканированное изображение с помощью инструментов рисования.
Читать полностью »
Оптимизация нейросетевой платформы Caffe для архитектуры Intel
2016-11-18 в 11:00, admin, рубрики: Intel AVX, Intel MKL, Intel Modern Code, intel xeon, openmp, Блог компании Intel, векторизация, высокая производительность, машинное обучение, оптимизация, параллельные вычисления, метки: Intel Modern CodeСовременные программы, претендующие на звание эффективных, должны учитывать особенности аппаратного обеспечения, на котором они будут исполняться. В частности, речь идёт о многоядерных процессорах, например, таких, как Intel Xeon и Intel Xeon Phi, о больших размерах кэш-памяти, о наборах инструкций, скажем, Intel AVX2 и Intel AVX-512, позволяющих повысить производительность вычислений.
Еле удержались, чтобы не пошутить про руссиано)
Вот, например, Caffe – популярная платформа для разработки нейронных сетей глубокого обучения. Её создали в Berkley Vision and Learning Center (BVLC), она пришлась по душе сообществу независимых разработчиков, которые вносят посильный вклад в её развитие. Платформа живёт и развивается, доказательство тому – статистика на странице проекта в GitHub. Caffe называют «быстрой открытой платформой для глубокого обучения». Можно ли ускорить такой вот «быстрый» набор инструментов? Задавшись этим вопросом, мы решили оптимизировать Caffe для архитектуры Intel.
Читать полностью »
Векторизация кода преобразования координат в пространстве на Intel® Xeon Phi™ с помощью низкоуровневых инструкций
2016-07-13 в 7:35, admin, рубрики: AVX-512, KNC, simd, Алгоритмы, Блог компании Intel, Блог компании Singularis, векторизация, высокая производительность, интринсики, матрицы преобразований, сопроцессорВведение
При решении задач моделирования движения объектов в трехмерном пространстве практически всегда требуется использование операций пространственных преобразований, связанных с умножением матриц преобразований и векторов. Для задачи N тел эта операция используется многократно для задания поворота и смещения тела относительно начала координат. Матрица пространственного преобразования имеет размерность 4х4, а размерность вектора, к которому применяется преобразование, соответственно 4x1. Рассмотрим оптимизацию выполнения такой операции с большим числом матриц и векторов под архитектуру Intel® Xeon Phi™.
Отчёт по итогам посещения ISC-2015
2016-02-04 в 8:45, admin, рубрики: Блог компании Acronis, Inc, векторизация, высокая производительность, разработка17 сентября 2015 в Москве состоялась очередная ежегодная конференция Intel Software Conference. Программа конференции включала общие выступления (вступительное слово, обзор технологий компании для разработчиков, истории успеха клиентов Intel) и две параллельные сессии: первая была посвящена оптимизации кода и параллельным вычислениям, вторая касалась вопросов мобильной разработки и медиа.
По итогам посещения первой сессии, наибольший интерес у меня вызвал доклад на тему «Векторизуем код с Intel Advisor XE». Помимо демонстрации возможностей инструмента по оптимизации кода, рассматривались общие вопросы векторизации, давались рекомендации к написанию векторизуемого кода, а также разбирались примеры конструкций, препятствующих автоматической векторизации, и давались советы по их устранению. Но давайте обо всём по порядку.
Читать полностью »
Векторизация, небольшой баг и семистильный костыль
2016-01-11 в 1:44, admin, рубрики: adobe illustrator, cordova, cordova/phonegap, html5, javascript, phonegap, svg, WebView, баги, баги ie, векторизация, разработка мобильных приложений, разработка под windows phoneТолько что я нашёл решение странного бага, который преследовал меня целую неделю. Эта небольшая эпопея произвела на меня такое впечатление, что я решил поделиться ею с сообществом. Ошибка которую я обнаружил, возможно, присутствует лишь в моей прошивке и скорее всего никогда вас не затронет. Разве что вы решите делать Cordova/PhoneGap/HTML5 приложение с векторной графикой для Windows Phone 8.1 Читать полностью »