Рубрика «уравнение Шрёдингера»

Волны, которые появляются из ниоткуда и исчезают бесследно - 1


Это было утро 12 апреля 1966 года. Элегантный лайнер «Микеланджело» направлялся через Атлантику в Нью-Йорк. 275-метровый красавец водоизмещением 46 тысяч тонн некоторое время был флагманом флота Италии и являлся одним из крупнейших судов в стране. Он принадлежал семейству суперлайнеров воплощавших в себе как отработанные технологии, так и прогрессивные решения: для безопасности пассажиров часть палуб и кают лишена иллюминаторов, дизайн и устройство дымовых труб не позволяли окуривать верхние прогулочные палубы, а также судно было оборудовано стабилизаторами качки, чтобы богатые пассажиры не пролили ни капли мартини.

В это апрельское утро «Микеланджело» с 745 пассажирами на борту столкнулся с очень плохой погодой. Капитан Джузеппе Солетти дал указания всем пассажирам оставаться в своих каютах и приказал судну следовать более южным маршрутом, чем обычно, чтобы избежать центра шторма. Обычное дело при путешествии через океан. Но внезапно перед судном возникла экстремально высокая волна. Все люди на судне ощутили мощный удар как после выстрела 305-мм пушки. Волна поднялась над носом на высоту около 18 метров и прошла вдоль палубы оставляя за собой лишь покорёженный металл. Даже окна двухсантиметровой толщины находящиеся на 25 метров над ватерлинией были выбиты ударом воды. Всё произошло в считаные секунды. Два пассажира погибли сразу, один член экипажа погиб через несколько часов, более пятидесяти человек получили ранения. И ещё четверть века, существование таких волн будет подвергаться сомнениям.
Читать полностью »

Самую холодную капельку во Вселенной уронили с высокой колокольни - 1


И остались довольны результатом. Теперь хотят отправить ее на орбиту Земли.

Сегодня мы попробуем разобраться в физике пятого состояния материи и выясним, зачем ее сбрасывать с башни.Читать полностью »

Новое в Wolfram Language | Аналитическое решение уравнений в частных производных - 1

Перевод поста Devendra Kapadia "New in the Wolfram Language: Symbolic PDEs".
Код, приведенный в статье, можно скачать здесь.
Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации
.


Уравнения в частных производных (УрЧП) играют очень важную роль в математике и ее приложениях. Их можно использовать для моделирования реальных явлений, таких как колебания натянутой струны, распространения потока тепла в стержне, в финансовых областях. Цель этой статьи — приоткрыть завесу в мир УрЧП (тем кто еще с ним не знаком) и ознакомить читателя с тем, как можно эффективно решать УрЧП в Wolfram Language, используя новый функционал для решения краевых задач в DSolve, а так же новую функцию DEigensystem, которая появилась в версии 10.3.

История УрЧП восходит к работам известных математиков восемнадцатого века — Эйлера, Даламбера, Лапласа, однако развитие этой области в последние три столетия так и не остановилось. И потому в статье я приведу как классические, так и современные примеры УрЧП, что позволит рассмотреть эту область знаний под разными углами.

Давайте начнем с рассмотрения колебаний натянутой струны с длиной π, закрепленной на обоих концах. Колебания струны можно смоделировать с помощью одномерного волнового уравнения, приведённого ниже. Здесь u(x,t) — вертикальное смещение точки струны с координатой х в момент времени t:

Новое в Wolfram Language | Аналитическое решение уравнений в частных производных - 2
Читать полностью »

В 1655 году английский математик Джон Валлис опубликовал трактат «Арифметика бесконечного», где вывел формулу числа π из произведения бесконечного ряда дробей, которые постепенно сходятся.

Формулу Валлиса для числа Пи нашли в атоме водорода - 1

Формула Валлиса мало пригодна для практических вычислений, но была полезна во многих теоретических исследованиях. Теперь математики из университета Рочестера (США) внезапно обнаружили, что та же самая формула подходит для описания квантово-механических энергетических уровней атома водорода. Это означает наличие прямой связи реального мира физики и абстрактного мира чистой математики.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js