Три года назад Марина Вязовска из Швейцарского федерального технологического института в Лозанне поразила математиков, обнаружив самый плотный способ упаковки сфер одинакового размера в восьми- и 24-мерном пространствах (во втором случае – при помощи четырёх соавторов). А теперь они с соавторами доказали нечто ещё более удивительное: конфигурации, решающие задачу плотной упаковки сфер в упомянутых измерениях, также решают бесконечное число других задач, связанных с наилучшим расположением точек, пытающихся избежать друг друга.
Точки, к примеру, могут обозначать бесконечный набор электронов, которые отталкивают друг друга и пытаются устроиться в конфигурации с наименьшей энергией. Или эти точки могут обозначать центры длинных, скрученных полимеров в растворе, пытающихся расположиться так, чтобы не сталкиваться с соседями. Вариантов подобных проблем есть множество, и совершенно неочевидно, что у всех их должно быть одно и то же решение. Математики считают, что в большинстве измерений это очень вряд ли будет так.
Читать полностью »