
Меня зовут Денис (tg: @chckdskeasfsd), и это история о том, почему в опенсурсе нет TTS с нормальными ударениями, и как я пытался это исправить.

Меня зовут Денис (tg: @chckdskeasfsd), и это история о том, почему в опенсурсе нет TTS с нормальными ударениями, и как я пытался это исправить.
Долгое время я прекрасно обходился без использования технологий искусственного интеллекта. Одни задачи можно было реализовать без всякого ИИ, а для других или готовых моделей не было или это были какие-то коммерческие облачные API.
В последнее время всё сильно изменилось и волна популярности искусственного интеллекта принесла множество крутейших моделей, позволяющих реализовать новые идеи или переосмыслить старые.
Казалось бы, есть и локально запускаемые аналоги ChatGPT или сервисов генерации изображений. Есть библиотеки типа Читать полностью »

В нашей прошлой статье мы ускорили наши модели в 10 раз, добавили новые высококачественные голоса и управление с помощью SSML, возможность генерировать аудио с разной частотой дискретизации и много других фишек.
В этот раз мы добавили:
eugeny);ё со словарем в 4 миллиона слов и точностью 100% (но естественно с рядом оговорок);Пока улучшение интерфейсов мы отложили на некоторое время. Ускорить модели еще в 3+ раза мы тоже смогли, но пока с потерей качества, что не позволило нам обновить их прямо в этом релизе.
Попробовать модель как обычно можно в нашем репозитории и в колабе.

В нашей прошлой статье про синтез речи мы дали много обещаний: убрать детские болячки, радикально ускорить синтез еще в 10 раз, добавить новые "фишечки", радикально улучшить качество.
Сейчас, вложив огромное количество работы, мы наконец готовы поделиться с сообществом своими успехами:
Это по-настоящему уникальное и прорывное достижение и мы не собираемся останавливаться. В ближайшее время мы добавим большое количество моделей на разных языках и напишем целый ряд публикаций на эту и смежные темы, а также продолжим делать наши модели лучше (например, еще в 2-5 раз быстрее).
Попробовать модель как обычно можно в нашем репозитории и в колабе.

Мы были очень рады, что наша прошлая статья понравилась Хабру. Мы получили много позитивной и негативной обратной связи. Также в ней мы сделали ряд обещаний по развитию нашего синтеза.
Мы достигли существенного прогресса по этим пунктам, но ультимативный релиз со всеми новыми фичами и спикерами может занять относительно много времени, поэтому не хотелось бы уходить в радиомолчание надолго. В этой статье мы ответим на справедливую и не очень критику и поделимся хорошими новостями про развитие нашего синтеза.
Если коротко:
Всем привет! Меня зовут Влад и я работаю data scientist-ом в команде речевых технологий Тинькофф, которые используются в нашем голосовом помощнике Олеге.
В этой статье я бы хотел сделать небольшой обзор технологий синтеза речи, использующихся в индустрии, и поделиться опытом нашей команды построения собственного движка синтеза.


Последние достижения в области глубокого обучения привносят существенные улучшения в развитие систем синтеза речи (далее – TTS). Это происходит благодаря применению более эффективных и быстрых методов изучения голоса и стиля говорящих, а также благодаря синтезу более естественной и качественной речи.Читать полностью »
Хотя нейронные сети стали использоваться для синтеза речи не так давно (например), они уже успели обогнал классические подходы и с каждым годам испытывают на себе всё новые и новый задачи.
Например, пару месяцев назад появилась реализация синтеза речи с голосовым клонированием Real-Time-Voice-Cloning. Давайте попробуем разобраться из чего она состоит и реализуем свою многоязычную (русско-английскую) фонемную модель.

Наша модель будет состоять из четырёх нейронных сетей. Первая будет преобразовывать текст в фонемы (g2p), вторая — преобразовывать речь, которую мы хотим клонировать, в вектор признаков (чисел). Третья — будет на основе выходов первых двух синтезировать Mel спектрограммы. И, наконец, четвертая будет из спектрограмм получать звук.
Привет! Весной 2019 года прошел очередной Think Developers Workshop, на котором все желающие могли собрать картонного робота TJBota под управлением IBM Watson Services. Под катом находится подробная инструкция, из чего и как собрать такого робота, полезные ссылки и простейшие рецепты, демонстрирующие некоторые когнитивные возможности сервисов Watson, а также небольшой анонс двух июльских семинаров о Watson Services в московском офисе IBM.

Распознавание речи (далее – ASR, Automatic Speech Recognition) используется при создании ботов и/или IVR, а также для автоматизированных опросов. Voximplant использует ASR, предоставляемый «корпорацией добра» – гугловское распознавание работает быстро и с высокой точностью, но… Как всегда, есть один нюанс. Человек может делать паузы даже в коротких предложениях, при этом нам нужна гарантия, что ASR не воспримет паузу как окончание ответа. Если ASR думает, что человек закончил говорить, то после «ответа» сценарий может включить синтез голоса со следующим вопросом – в это же самое время человек продолжит говорить и получит плохой пользовательский опыт: бот/IVR перебивает человека. Сегодня мы расскажем, как с этим бороться, чтобы ваши пользователи не огорчались от общения с железными помощниками.
