Рубрика «целочисленная арифметика»

и точно. Точнее, с заданной точностью, простите за каламбур.

Под катом я расскажу, как сделать это с использованием школьного курса алгебры и целочисленной арифметики, при чём здесь полиномы Чебышёва I-го рода, и дам ссылки на примеры реализаций для ПК и Cortex-M3.

Как посчитать синус быстро - 1

Читать полностью »

Введение


«Что получится, если мы заменим числа с плавающей запятой на рациональные числа и попытаемся отрендерить изображение?»

Такой вопрос я задал себе после размышлений над твитом исследователя и преподавателя компьютерной графики Моргана Макгвайра. Он рассуждал о том, насколько сильно студенты компьютерных наук удивляются, когда впервые узнают, что для хранения привычных нам чисел с плавающей запятой в современных компьютерах нужно идти на компромиссы. И эти компромиссы делают сложными простые задачи, например, проверку принадлежности точки треугольнику. Проблема, разумеется, заключается в том, что проверка нахождения четырёх точек в одной плоскости (копланарности) с помощью определителя или какого-нибудь векторного умножения (а на самом деле это одно и то же) никогда не даст значение, точно равное нулю, чего требуют эти математические методы. Даже если бы настоящие вычисления нахождения на одной плоскости были бы точны, те же компромиссы с точностью почти с вероятностью в 1,0 дали бы ответ, что сами четыре точки не копланарны.

Это зародило во мне мысль — если допустить, что все входящие данные рендерера (координаты вершин, 3D-преобразования и т.д.) были бы заданы как рациональные числа, то создавали бы все операции, от создания луча, обхода ускоряющей структуры и до пересечения лучей с треугольниками только рациональные числа? Если это было бы так, то мы бы смогли выполнять проверку копланарности совершенно точно! Возможно, вы зададитесь вопросом, почему 3D-сцена, выраженная в рациональных числах должна давать результаты тоже только в рациональных числах…

Можно ли рендерить реалистичные изображения без чисел с плавающей запятой? - 1

Простая сцена, трассировка пути в которой выполнена рациональной арифметикой. Здесь используется система чисел «с плавающей чертой дроби», а не числа с плавающей запятой.
Читать полностью »

Рекурсивный фильтр скользящего среднего - 1

Да, дорогой читатель, такое тоже бывает, и может быть вкусно и полезно!

Как ты уже наверняка знаешь, дорогой читатель, существует два способа построения цифровых фильтров. Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js