Рубрика «тривекторы»

image

Для записи трёхмерных поворотов программисты графики используют кватернионы. Однако в кватернионах сложно разобраться, потому что изучают их поверхностно. Мы просто принимаем на веру странные таблицы умножения и другие загадочные определения, и используем их как «чёрные ящики», поворачивающие векторы так, как нам нужно. Почему $mathbf{i}^2=mathbf{j}^2=mathbf{k}^2=-1$ и $mathbf{i} mathbf{j}=mathbf{k}$? Почему мы берём вектор и превращаем его в «мнимый» вектор, чтобы преобразовать его, например $mathbf{q} (xmathbf{i} + ymathbf{j} + z mathbf{k}) mathbf{q}^{*}$? Да кому это интересно, если всё работает, правда?

Существует способ описания поворотов под названием ротор, который относится к области и комплексных чисел (в 2D), и кватернионов (в 3D), и даже обобщается до любого количества измерений.

Мы можем создавать роторы практически полностью с нуля, вместо того, чтобы определять из ничего кватернионы и пытаться объяснить, как они работают задним числом. Это занимает больше времени, но мне кажется, что это стоит того, потому что их гораздо легче понять!

Кроме того, для визуализации и понимания трёхмерных роторов не нужно использовать четвёртое пространственное измерение.

Было бы здорово, если бы начали вытеснять использование и изучение кватернионов, заменяя их роторами. Заменить их очень просто, а код останется почти таким же. Всё, что можно делать с кватернионами, например, интерполяцию и устранение блокировки осей (Gimbal lock), можно сделать и с роторами. Но понимать мы начинаем гораздо больше.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js