Рубрика «Transformers» - 2

Зачем

В интернете полно прекрасных статей про BERT. Но часто они слишком подробны для человека, который хочет просто дообучить модель для своей задачи. Данный туториал поможет максимально быстро и просто зафайнтюнить русскоязычный BERT для задачи классификации. Полный код и описание доступны в репозитории на github, есть возможность запустить все в google colab одной кнопкой.

Workflow

  1. Данные для обучения

  2. Модель

  3. Helpers

  4. Train

  5. Inference

Данные для обучения

Для обучения использовались очищенные данные русскоязычного твиттера из датасета Читать полностью »

Тихая революция и новый дикий запад в ComputerVision - 1

Казалось бы, революция с Computer Vision уже была. В 2012 году выстрелили алгоритмы основанные на сверточных нейронных сетях. Года с 2014 они дошли до продакшна, а года с 2016 заполонили всеЧитать полностью »

Всем привет. С некоторым запозданием я решил опубликовать эту статью. Каждый год я стараюсь подвести итоги произошедшего в области обработки естественного языка (natural language processing). Не стал исключением и этот год.

BERTs, BERTs are everywhere

Начнем по порядку. Если вы не уехали в глухую Сибирскую тайгу или отпуск на Гоа на последние полтора года, то вы наверняка слышали слово BERT. Появившись в самом конце 2018-ого за прошедшее время эта модель завоевала такую популярность, что в самый раз будет вот такая картинка:

Natural Language Processing. Итоги 2019 и тренды на 2020 - 1
Читать полностью »

Продолжаем нашу серию материалов, посвященных открытым инструментам для разработчиков. Сегодня рассказываем о фреймворках и библиотеках для МО — Transformers, Accord.NET и MLflow.

Инструменты для разработчиков ПО: открытые фреймворки и библиотеки машинного обучения - 1Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js