Скромность не всегда добродетель
В 1865 году Джеймс Клерк МаксвеллЧитать полностью »
В 1865 году Джеймс Клерк МаксвеллЧитать полностью »
Как работает поле Хиггса:
До сего момента в серии статей поле Хиггса я объяснял вам основную идею того, как оно работает, и описывал, как поле Хиггса становится ненулевым, и как появляется частица Хиггса – по меньшей мере, для простейшего типа поля и частицы Хиггса (из Стандартной Модели). Но я не объяснил, почему не существует альтернативы для ввода чего-либо, напоминающего поле Хиггса – почему для ввода масс известных частиц в отсутствии этого поля существуют препятствия. Это мы и обсудим в данной статье.
Я объяснил, что все элементарные «частицы» (то бишь, кванты) природы – это кванты волн в полях. И, упрощённо, все эти поля удовлетворяют уравнению класса 1 вида:
где Z(x,t) – поле, m – масса частицы, c – скорость света, h – постоянная Планка. Если частица безмассовая, тогда соответствующее поле удовлетворяет такому же уравнению, где m = 0, которое я назвал уравнением класса 0.
Случаи с m = 0 включают фотоны, глюоны и гравитоны – кванты электрического, хромоэлектрического (или глюонного) и гравитационного полей; всё это безмассовые кванты («частицы»), перемещающиеся на универсальном пределе скорости с. Для электронов, мюонов, тау, всех кварков, всех нейтрино, частиц W, Z и бозона Хиггса, у каждого из которых своя масса, соответствующее поле удовлетворяет уравнению класса 1 с подставленной в него соответствующей массой.
Читать полностью »
Как работает поле Хиггса:
1. Основная идея
2. Почему поле Хиггса в среднем ненулевое
Как так получается, что у поля Хиггса в природе среднее значение не равно нулю, а у других (судя по всему, элементарных) полей природы, известных нам, оно нулевое? [Очень мелкий шрифт: другие поля, за исключением гравитационного поля самого нижнего уровня, зовутся метрическими, это позволяет определить существование пространства и времени].
Во-первых, фермионные поля не могут обладать большим постоянным ненулевым значением в природе. Это связано с различием между фермионами и бозонами. Бозоны могут быть в среднем ненулевыми, но фермионы не могут. Так что можно забыть про электроны (и их кузенов мюонов и тау), про нейтрино и кварки. Мелкий шрифт: фермионы могут образовывать пары друг с другом или с антифермионами и составлять композитные бозоны, которые могут быть в среднем ненулевыми. Это так для верхних и нижних кварков и их антикварков, и для электронов в сверхпроводнике. Но это долгая история, и она не касается нашей напрямую.
Читать полностью »
Если вы читали мою серию статей про физику частиц и полей, вы знаете, что все т.н. «элементарные частицы» на самом деле – кванты (волны, чья амплитуда и энергия минимально допустимые квантовой механикой) релятивистских квантовых полей. Такие поля обычно удовлетворяют уравнениям движения класса 1 (или их обобщению) вида
Где Z(x,t) – поле, Z0 — равновесное состояние, x – пространство, t – время, d2Z/dt2 представляет изменение по времени изменения по времени Z (d2Z/dx2 — то же для пространства), c – универсальное ограничение скорости (часто называемое «скоростью света»), а νmin — минимально допустимая частота для волны в поле. Некоторые поля удовлетворяют уравнению класса 0, которое представляет собой просто уравнение класса 1, в котором величина νmin нулевая. У кванта такого поля масса
Где h – постоянная Планка. Иначе говоря,
1) шар на пружине, ньютоновская версия
2) квантовый шар на пружине
3) волны, классический вид
4) волны, классическое уравнение движения
5) квантовые волны
6) поля
Вот мы, наконец, и добрались до нашей цели: понять, что на самом деле представляют собой те штуки, что мы зовём «частицами», а именно – электроны, фотоны, кварки, глюоны и нейтрино. Всё, это, конечно же относится к современной науке. Стоит помнить, что в науке нет никаких гарантий того, что текущее понимание не будет в дальнейшем углублено.
Предыдущая статья описывала, что такое поля – объекты, обладающие значением в любой точке пространства и в любой момент времени (функции от пространства и времени), удовлетворяющие уравнению движения, и физически осмысленные в плане того, что они способны переносить энергию из одного места в другое и влиять на физические процессы Вселенной.
Мы узнали, что большинство знакомых нам полей описывают свойство среды, такой, как высота верёвки или давление в газе. Но также мы узнали, что в эйнштейновской теории относительности существует особый класс полей, релятивистские поля, не требующие среды. Или, по крайней мере, если у них и есть среда, она весьма необычная. Ничто в уравнениях поля не требует наличия какой-то среды и не говорит о том, какое свойство этой среды описывают релятивистские поля.
Читать полностью »