Рубрика «теорема бошерницана»

В статье дано простое доказательство того, что отображение компактного метрического пространства в себя, не уменьшающее расстояния, является изометрией.


Отображение $f:Erightarrow E$ метрического пространства с метрикой $rho (cdot ,cdot )$ называют изометрией, если для любых $x,yin E$ справедливо равенство $rho (x,y)=rho (f(x),f(y))$. Мы докажем здесь следующее утверждение:

Теорема. Если $f:Erightarrow E$ отображение компактного метрического пространства в себя, такое что

$rho (x,y)leq rho (f(x),f(y))(1)$

для любых $x,yin E$, то отображение $f$ — изометрия.

Напомним некоторые простые утверждения о метрических компактах и введём некоторые соглашения и определения, необходимые для дальнейшего изложения.

Через $|A|$ будем обозначать количество элементов конечного множества $A$.

Для $xin E$ и $varepsilon >0$ множество $Q_{x,varepsilon }={y:yin E,rho (x,y)<varepsilon }$ назовем $varepsilon$-окрестностью точки $x$ (или открытым шаром с центром в точке $x$ и радиусом $varepsilon$).

Конечное множество $Asubset E$ назовём $varepsilon$-сетью в $E$ (или просто $varepsilon$-сетью), если для любой точки $xin E$ найдётся точка $yin A$ такая, что $rho (x,y)<varepsilon$. Множество $Bsubset E$ назовём $varepsilon$-разреженным, если $rho (x,y)geq varepsilon$ для любых $x,yin B$, таких, что $xneq y$.

Для любого конечного множества $A=left{a_1,ldots ,a_mright}subset E$ обозначим через $l(A)$ сумму $sum _{ileq j} rho left(a_i,a_jright)$. Величину $l(A)$ назовём длиной множества $A$.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js