Всех приветствую, меня зовут Антон Рябых, работаю в Doubletapp. Вместе с коллегой Данилом Гальпериным мы написали статью про важный этап в процессе обучения нейронных сетей и получения необходимых нам результатов — оптимизацию модели. Зачем нужно оптимизировать модель, если и так все работает? Но как только вы начнете разворачивать модель на устройстве, которое будет ее обрабатывать, перед вами встанет множество проблем.
Рубрика «tensorrt»
Neural Network Optimization: океан в капле
2023-03-16 в 14:51, admin, рубрики: cезон machine learning, neural networks, OpenVINO, tensorrt, Блог компании Doubletapp, дистилляция, искусственный интеллект, квантование, кластеризация, машинное обучение, нейронные сети, обработка изображений, Серверная оптимизацияКак запихать нейронку в кофеварку
2020-10-27 в 6:34, admin, рубрики: devops, Edge TPU, Google Edge, Google TPU, gyrfalcon, inference, MNN, myriad, ncnn, ONNX, ONNX runtime, ONNX.js, opencv, OpenVINO, pytorch, Pytorch mobile, Tencent cnn, TensorFlow, Tensorflow lite, tensorrt, TorchScript, triton, Анализ и проектирование систем, Блог компании Recognitor, Компьютерное железо, машинное обучениеМир машинного обучения продолжает стремительно развиваться. Всего за год технология может стать мейнстримом, и разительно измениться, придя в повседневность.
За прошедший год-полтора, одной из таких технологий, стали фреймворки выполнения моделей машинного обучения. Не то, что их не было. Но, за этот год, те которые были — стали сильно проще, удобнее, мощнее.
В статье я попробую осветить всё что повылезало за последнее время. Чтобы вы, решив использовать нейронную сеть в очередном калькуляторе, знали куда смотреть.
Читать полностью »
Self-driving ГАЗ66 Monster Truck 1-16
2020-02-19 в 11:28, admin, рубрики: DIY, diy или сделай сам, Jetson Nano, opencv, RC cars, TensorFlow, tensorrt, машинное обучениеХочу рассказать вам о том, как я делал и сделал самоуправляему машинку :)
Я мог бы рассказать сразу, как делать, сухо прикрепив схемы и bash команды, но так будет скучно. Предлагаю вам интересную (я надеюсь) историю о том, как лично я прошел этот путь, и куда пришел.
Те места, где было что фоткать, с фотками. Там, где про софт — скорее всего без фото.
Это будет действительно история в формате повествования, как я рассказывал бы вам за чашкой кофе. Это не про bash команды, python скрипты, и вот это вот всё.
Начнём с фотки и видео того, что получилось, и дальше вся история под катом.
TensorRT 6.x.x.x — высокопроизводительный инференс для моделей глубокого обучения (Object Detection и Segmentation)
2020-01-20 в 12:17, admin, рубрики: aurorai.ru, devops, docker, machine learning, object detection, ods.ai, python, pytorch, segmentation, tensorrt, Блог компании Open Data Science, машинное обучение, обработка изображений
Больно только в первый раз!
Всем привет! Дорогие друзья, в этой статье я хочу поделиться своим опытом использования TensorRT, RetinaNet на базе репозитория github.com/aidonchuk/retinanet-examples (это форк официальной репы от nvidia, который позволит начать использовать в продакшен оптимизированные модели в кратчайшие сроки). Пролистывая сообщения в каналах сообщества ods.ai, я сталкиваюсь с вопросами по использованию TensorRT, и в основном вопросы повторяются, поэтому я решил написать как можно более полное руководство по использованию быстрого инференса на основе TensorRT, RetinaNet, Unet и docker.
Читать полностью »
Джедайская техника уменьшения сверточных сетей — pruning
2019-12-27 в 7:10, admin, рубрики: cnn, convolutional neural network, CUDA, deep learning, eco, gpu, keras, machine learning, neural networks, Nvidia, optimization, pruning, python, speedup, TensorFlow, tensorrt, yolo, высокая производительность, искусственный интеллект, Исследования и прогнозы в IT, машинное обучение
Перед тобой снова задача детектирования объектов. Приоритет — скорость работы при приемлемой точности. Берешь архитектуру YOLOv3 и дообучаешь. Точность(mAp75) больше 0.95. Но скорость прогона всё еще низкая. Черт.
Сегодня обойдём стороной квантизацию. А под катом рассмотрим Model Pruning — обрезание избыточных частей сети для ускорения Inference без потери точности. Наглядно — откуда, сколько и как можно вырезать. Разберем, как сделать это вручную и где можно автоматизировать. В конце — репозиторий на keras.