Рубрика «TensorFlow» - 6

В "Черном Зеркале" была серия (S2E1), в которой создавали роботов, похожих на умерших людей, используя для обучения историю переписок в социальных сетях. Я хочу рассказать, как я попробовал сделать что-то подобное и что из этого получилось. Теории не будет, только практика.

image

Идея была простая — взять историю своих чатов из Telegram и на их основе обучить seq2seq сеть, способную по началу диалога предсказывать его завершение. Такая сеть может работать в трех режимах:

  • Предсказывать завершение фразы пользователя с учетом истории разговора
  • Работать в режиме чат-бота
  • Синтезировать логи разговоров целиком

Вот что получилось у меня

Бот предлагает завершение фразы

image

Бот предлагает завершение диалога

image

Бот общается с живым человеком

User: привет
Bot: привет
User: как ты?
Bot: собираюсь
User: баг пофиксил?
Bot: нет
User: почему?
Bot: да не получается
User: ты сегодня когда дома будешь?
Bot: не знаю пока
User: ты занят?
Bot: в магазин еду 

Дальше я расскажу, как подготовить данные и обучить такого бота самому.

Читать полностью »

Как Netflix использует Питон - 1

Поскольку многие из нас готовятся к конференции PyCon, мы хотели немного рассказать, как Python используется в Netflix. Мы применяем Python на всём жизненном цикле: от принятия решения, какие сериалы финансировать, и заканчивая работой CDN для отгрузки видео 148 миллионам пользователей. Мы вносим свой вклад во многие пакеты Python с открытым исходным кодом, некоторые из которых упомянуты ниже. Если что-то вас интересует, посмотрите наш сайт вакансий или ищите нас на PyCon.
Читать полностью »

TensorFlow — это опенсорсная библиотека, созданная Google, которая используется при разработке систем, использующих технологии машинного обучения. Эта библиотека включает в себя реализацию множества мощных алгоритмов, рассчитанных на решение распространённых задач машинного обучения, среди которых можно отметить распознавание образов и принятие решений.

image

Этот материал посвящён основам TensorFlow и рассчитан на читателей, которые ничего не знают о данной библиотеке.
Читать полностью »

Прогресс в области нейросетей вообще и распознавания образов в частности, привел к тому, что может показаться, будто создание нейросетевого приложения для работы с изображениями — это рутинная задача. В некотором смысле, так и есть — если вам пришла в голову идея, связанныя с распознаватием образов, не сомневайтесь, что кто-то уже что-то подобное написал. Все, что от вас требуется, это найти в Гугле соответствующий кусок кода и «скомпилировать» его у автора.

Однако, все еще есть многочисленные детали, делающие задачу не столько неразрешимой, сколько… нудной, я бы сказал. Отнимающей слишком много времени, особенно если вы — новичок, которому нужно руководство, step-by-step, проект, выполненный прямо на ваших глазах, и выполненный от начала и до конца. Без обычных в таких случаях «пропустим эту очевидную часть» отговорок.

В этой статье мы рассмотрим задачу создания определителя пород собак (Dog Breed Identifier): создадим и обучим нейросеть, а затем портируем ее на Java для Android и опубликуем на Google Play.

Если вы хотите посмотреть на готовый результат, вот он: NeuroDog App на Google Play.

Веб сайт с моей робототехникой (в процессе): robotics.snowcron.com.
Веб сайт с самой программой, включая руководство: NeuroDog User Guide.

А вот скриншот программы:

image

Читать полностью »

Для тех, кому лень читать всё: предлагается опровержение семи популярных мифов, которые в области исследований машинного обучения часто считаются истинными, по состоянию на февраль 2019. Данная статья доступна на сайте ArXiv в виде pdf [на английском языке].

Миф 1: TensorFlow – это библиотека для работы с тензорами.
Миф 2: Базы данных изображений отражают реальные фотографии, встречающиеся в природе.
Миф 3: Исследователи МО не используют проверочные наборы для испытаний.
Миф 4: В обучении нейросети используются все входные данные.
Миф 5: Для обучения очень глубоких остаточных сетей требуется пакетная нормализация.
Миф 6: Сети с вниманием [attention] лучше свёрточных [convolution].
Миф 7: Карты значимости – надёжный способ интерпретации нейросетей.

А теперь — подробности.
Читать полностью »

Nomeroff Net numberplate detection OCR example

Продолжаем рассказ о том как распознавать номерные знаки для тех кто умеет писать приложение «hello world» на python-е! В этой части научимся тренировать модели, которые ищут регион заданного объекта, а также узнаем как написать простенькую RNN-сеть, которая будет справляться с чтением номера лучше чем некоторые коммерческие аналоги.
В этой части я расскажу как тренировать Nomeroff Net под Ваши данные, как получить высокое качество распознавания, как настроить поддержку GPU и ускорить все на порядок…
Читать полностью »

Здравствуйте, я школьник 11 классов, интересуюсь программированием, около-IT тематикой.

Пишу данный пост с целью поделиться своим проектом, занявшим 10 часов моей жизни на выходных и выполненным с целью понять возможности современных методов анализа данных. Публикация может рассматриваться как пример удачной реализации для людей, несведущих в этой области знания, а так же как просьба указать мои ошибки для людей, соответственно, сведущих.
Читать полностью »

Создание автономных машин — популярная нынче тема и много интересного тут происходит на любительском уровне.
Самым старым и известным курсом была онлайн-степень от Udacity.

Итак, в автономных машинах есть очень модный подход — Behavioral Cloning, суть которого заключается в том, что компьютер учится вести себя как человек (за рулем), опираясь только на записанные входные и выходные данные. Грубо говоря, есть база картинок с камеры и соотвествующий им угол поворота руля.
Читать полностью »

Привет!

В этой небольшой заметке расскажу о двух подводных камнях, с которыми как легко столкнуться, так и легко о них разбиться.

Речь пойдет о создании тривиальной нейронной сети на Keras, с помощью которой будем предсказывать среднее арифметическое двух чисел.

Казалось бы, что может быть проще. И действительно, ничего сложного, но есть нюансы.

Кому тема интересна, добро пожаловать под кат, здесь не будет долгих занудных описаний, просто короткий код и комментарии к нему.
Читать полностью »

Около года назад ко мне пришла идея создания открытого фреймворка для нейроинтерфейсов.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js