1. Введение
В предыдущих статьях мы рассмотрели теоретические основы NLP, включая базовые понятия, такие как токенизация, стемминг, лемматизация и другие. Мы также поработали с библиотеками NLTK и spaCy и выполнили простые задания по обработке текста.
В этой статье мы продолжим изучение NLP и перейдем к более продвинутым темам, которые являются главными для построения современных приложений и моделей в области обработки естественного языка. А также создадим и обучим модели самостоятельно, используя TensorFlow/Keras и PyTorch.