Рубрика «Tacotron»

Хотя нейронные сети стали использоваться для синтеза речи не так давно (например), они уже успели обогнал классические подходы и с каждым годам испытывают на себе всё новые и новый задачи.

Например, пару месяцев назад появилась реализация синтеза речи с голосовым клонированием Real-Time-Voice-Cloning. Давайте попробуем разобраться из чего она состоит и реализуем свою многоязычную (русско-английскую) фонемную модель.

Строение

Многоязычный синтез речи с клонированием - 1

Наша модель будет состоять из четырёх нейронных сетей. Первая будет преобразовывать текст в фонемы (g2p), вторая — преобразовывать речь, которую мы хотим клонировать, в вектор признаков (чисел). Третья — будет на основе выходов первых двух синтезировать Mel спектрограммы. И, наконец, четвертая будет из спектрограмм получать звук.

Читать полностью »

Нейросеть Tacotron 2 говорит с человеческими интонациями, на которых обучена - 1
Архитектура Tacotron 2. В нижней части иллюстрации показаны модели предложение-к-предложению, которые транслируют последовательность букв в последовательность признаков в 80-мерном пространстве. Техническое описание см. в научной статье

Синтез речи — искусственное воспроизводство человеческой речи из текста — традиционно считается одной из составляющих частей искусственного интеллекта. Раньше такие системы можно было увидеть только в фантастических фильмах, а сейчас они работают буквально в каждом смартфоне: это системы Сири, Алиса и тому подобные. Вот только они не очень реалистично произносят фразы: голос неживой, слова отделены друг от друга.

Компания Google разработала продвинутый синтезатор речи нового поколения. Он называется Tacotron 2 и основан на нейросети. Для демонстрации его возможностей компания выложила примеры синтеза. Внизу странички с примерами можно пройти тест и попробовать определить, где текст произносит синтезатор речи, а где человек. Определить разницу практически невозможно.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js