Рубрика «t-распределение»

Распределение Гаусса на графике — это колоколообразная кривая. Она достигает своего пика в среднем значении и убывает по обе стороны от него. Социологи его применяют, когда изучают мнение, а статистики — средние доходы, рост людей и то, кто какую окрошку предпочитает.

Распределение удобное, математически выверенное. Показывает, что типичные события происходят часто, а редкие — редко. В начале двадцатого века выяснилось, что для некоторых случаев оно не подходит, более того — может выдать ложные результаты.

Например, оно не подходит для промышленного пивоварения. К такому выводу однажды пришёл учёный (и экспериментальный пивовар компании Гиннесс) Уильям Госсет. Он столкнулся с проблемой: как подойти к оценке качества сырья и продукта, если данных для анализа мало, и в итоге вывел так называемое t-распределение. У него, в отличие от распределения Гаусса, более низкий «горб» и толстые «хвосты» — края, отвечающие за маловероятные события. За счёт этих хвостов, а также благодаря своей возможности меняться, притворяясь гауссовым, t-распределение незаметно, но прочно вошло в нашу жизнь.

Правда, под именем «распределение Стьюдента».

image
Нормальное распределение (z) и два варианта распределения Стьюдента Читать полностью »

в 7:46, , рубрики: f-критерий, f-распределение, f-тест, t-критерий, t-распределение, t-тест, z-критерий Фишера, z-распределение, z-тест, Алгоритмы, Анализ и проектирование систем, бета распределение, биноминальное распределение, гамма распределение, геометрическое рапределение, гипергеометрическое распределение, двойное показательное, двойное экспоненциальное, Занимательные задачки, критерий Пирсона, критерий согласия, критерий хи квадрат, математика, моделирование, нормальное распределение, отрицательное биноминальное, плотность вероятности, показательное распределение, профит фактор, распределение Бернулли, распределение Вейбулла, распределение Гаусса, распределение Коши, распределение Лапласса, распределение Паскаля, распределение Пирсона, распределение пуассона, распределение Стьюдента, распределение Фишера, распределение хи квадрат, распределение Эрланга, случайная величина, статистика, статистический тест, статитический анализ, теория вероятностей, тест Стьюдента, тест Фишера, экспоненциальное распределение

«Правда, чистая правда и статистика» или «15 распределений вероятности на все случаи жизни» - 1 Статистика приходит к нам на помощь при решении многих задач, например: когда нет возможности построить детерминированную модель, когда слишком много факторов или когда нам необходимо оценить правдоподобие построенной модели с учётом имеющихся данных. Отношение к статистике неоднозначное. Есть мнение, что существует три вида лжи: ложь, наглая ложь и статистика. С другой стороны, многие «пользователи» статистики слишком ей верят, не понимая до конца, как она работает: применяя, например, тест Стьюдента к любым данным без проверки их нормальности. Такая небрежность способна порождать серьёзные ошибки и превращать «поклонников» теста Стьюдента в ненавистников статистики. Попробуем поставить токи над i и разобраться, какие модели случайных величин должны использоваться для описания тех или иных явлений и какая между ними существует генетическая связь.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js