Рубрика «сжатие с потерями»

Не так давно на Хабре в статье «Применение нелинейной динамики и теории Хаоса к задаче разработки нового алгоритма сжатия аудио данных» был анонсировал принципиально новый аудио-кодек с пятью невиданными ранее уникальными свойствами. Подобная формулировка вызвала интерес и желание немного разобраться, что к чему.

Далее будут рассмотрены заявленные уникальные свойства и произведено несколько тестовых измерений.
Читать полностью »

В данной публикации я хотел бы представить ряд идей и опыт практического воплощения элемента теории Хаоса — фрактального преобразования в проекте разработке нового алгоритма сжатия аудио данных.

Чего вы не найдёте здесь:

  • Сложных уравнений. Цель данной публикации является представление идей и видение задачи. И как любое видение оно во многом абстрактно;
  • Каких либо генераторов фрактальных изображений. Такие изображения выглядят интересно, но мня интересуют реальные задачи.

Что вы найдёте здесь:

  1. Краткий обзор применения фрактальных преобразований к задаче сжатия данных с потерями;
  2. Необычная интерпретация фрактальных преобразований;
  3. Ссылки на реальный код компрессора и декомпрессора аудио данных посредством фрактальных преобразований (декомпрессор представлен в форме плагина для аудио плейера Winamp);
  4. Описание нового формата для хранения сжатых аудио данных с пятью уникальными свойствами, отличающими новый формат от многих хорошо известных индустриальных аудио форматов.

Читать полностью »

Идея, лежащая в основе всех алгоритмов сжатия с потерями, довольно проста: на первом этапе удалить несущественную информацию, а на втором этапе к оставшимся данным применить наиболее подходящий алгоритм сжатия без потерь. Основные сложности заключаются в выделении этой несущественной информации. Подходы здесь существенно различаются в зависимости от типа сжимаемых данных. Для звука чаще всего удаляют частоты, которые человек просто не способен воспринять, уменьшают частоту дискретизации, а также некоторые алгоритмы удаляют тихие звуки, следующие сразу за громкими, для видеоданных кодируют только движущиеся объекты, а незначительные изменения на неподвижных объектах просто отбрасывают. Методы выделения несущественной информации на изображениях будут подробно рассмотрены далее.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js