Рубрика «свёрточные сети»

Вступление

Когда я только начинал свой путь в информационную безопасность, мне нравилось тестировать веб-приложения на проникновение. В основном это были инъекционные атаки, поэтому возникла идея создать свой собственный межсетевой экран, защищающий от инъекционных атак, но с современным подходом, используя машинное обучение. Изучая вопрос о построении межсетевого экрана, я пришел к следующим выводам:

Перевод статьи A Recipe for Training Neural Networks от имени автора (Andrej Karpathy). С некоторыми дополнительными ссылками.

Также доступна версия на украинском языке в личном блоге: Рецепт навчання нейрнонних мереж.

Рецепт обучения нейросетей - 1

Несколько недель назад я опубликовалЧитать полностью »

В прошлом месяце на NVIDIA GTC 2019 компания NVIDIA представила новое приложение, которое превращает нарисованные пользователем простые цветные шарики в великолепные фотореалистичные изображения.

Приложение построено на технологии генеративно-состязательных сетей (GAN), в основе которой лежит глубинное обучение. Сама NVIDIA называет его GauGAN — это каламбур-отсылка к художнику Полу Гогену. В основе функциональности GauGAN лежит новый алгоритм SPADE.

В этой статье я объясню, как работает этот инженерный шедевр. И чтобы привлечь как можно больше заинтересованных читателей, я постараюсь дать детализированное описание того, как работают свёрточные нейронные сети. Поскольку SPADE — это генеративно-состязательная сеть, я расскажу подробнее и о них. Но если вы уже знакомы с эти термином, вы можете сразу перейти к разделу «Image-to-image трансляция».

Генерация изображений

Давайте начнем разбираться: в большинстве современных приложений глубинного обучения используется нейронный дискриминантный тип (дискриминатор), а SPADE — это генеративная нейронная сеть (генератор).
Читать полностью »

Про распознавание номеров мы рассказываем на Хабре давным давно. Надеюсь даже интересно. Похоже настало время рассказать как это применяется, зачем это вообще нужно, куда это можно запихнуть. А самое главное — как это изменяется в последние годы с приходом новых алгоритмов машинного зрения.
Можно ли запихнуть распознавание номеров в любой тамагочи? - 1
Читать полностью »

Открытая трансляция из главного зала SmartData 2017: речь не про решения — речь про эволюцию - 1

Как мы уже неоднократно сообщали ранее, в этом году компания JUG.ru Group решила заглянуть в будущее и разобраться, какая необходимость двум серым ящикам взаимодействовать друг с другом впустить в наш мир дозу сакральных знаний по Big Data и машинному обучению — мы сделали конференцию SmartData 2017, которая пройдёт в Питере 21 октября.

Зачем мы собираем конференцию по Big Data и машинному обучению? Потому что не можем не собрать. И чтобы обратить в наше братство как можно большее количество разработчиков, мы традиционно открываем бесплатную онлайн-трансляцию из первого зала конференции.

Итак, бесплатная онлайн-трансляция из главного зала SmartData 2017 начнётся 21 октября 2017 года в 9:30 утра по московскому времени. Только вы, мы и будущее. В этот раз трансляция будет доступна в 2k — доставайте ваши 4k мониторы!

Открытая трансляция из главного зала SmartData 2017: речь не про решения — речь про эволюцию - 2

Ссылка на онлайн-трансляцию первого трека конференции SmartData 2017 и краткое описание докладов — под катом.
Читать полностью »

Сегментация строки на символы является одним из важнейших этапов в процессе оптического распознавания символов (OCR), в частности, при оптическом распознавании изображений документов. Сегментацией строки называется декомпозиция изображения, содержащего последовательность символов, на фрагменты, содержащие отдельные символы.

Важность сегментации обусловлена тем обстоятельством, что в основе большинства современных систем оптического распознавания текста лежат классификаторы (в том числе — нейросетевые) отдельных символов, а не слов или фрагментов текста. В таких системах ошибки неправильного проставления разрезов между символами как правило являются причиной львиной доли ошибок конечного распознавания.

Поиск границ символов усложняется из-за артефактов печати и оцифровки (сканирования) документа, приводящим к “рассыпанию” и “склеиванию” символов. В случае использования стационарных или мобильных малоразмерных видеокамер спектр артефактов оцифровки существенно пополняется: возможны дефокусировка и смазывание, проективные искажения, деформирование и изгибы документа. При съемке камерой в естественных сценах на изображениях часто возникают паразитные перепады яркости (тени, отражения), а также цветовые искажения и цифровой шум в результате низкой освещенности. На рисунке ниже показаны примеры сложных случаев при сегментации полей паспорта РФ.

Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей - 1Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей - 2
Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей - 3Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей - 4
Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей - 5Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей - 6

В этой статье мы расскажем о методе сегментации символов текстовых строк документов, разработанном нами в Smart Engines, основанный на обучении сверточных и рекуррентных нейронных сетей. Основным рассматриваемым в работе документом является паспорт РФ.
Читать полностью »

image

С возрастом когнитивные способности человека снижаются. Нейробиологам давно известно, что это снижение коррелирует с физическими изменениями в головном мозге. Увидеть первые признаки старения или даже определить возраст мозга можно с помощью МРТ, а разница между возрастом мозга и хронологическим возрастом человека помогает выявить нейродегенеративные заболевания на начальных стадиях.

Такой анализ зачастую является очень долгим, поскольку данные МРТ нужно детально обработать, прежде чем запустить автоматизированные процессы распознавания старения: удалить с изображения кости черепа, разделить серое и белое вещество и другие ткани, а также удалить артефакты изображения, включая различные способы сглаживания изображения. Вся обработка может занять более 24 часов, и это препятствие для врачей, надеющихся принимать во внимание возраст головного мозга пациента в процессе клинической диагностики. Ученые из Королевского колледжа в Лондоне нашли способ ускорить этот процесс.Читать полностью »

Вскоре после изобретения фотографии некоторые криминалисты стали замечать схожие черты в фотокарточках преступников, сделанных после ареста. Если верить их словам, преступников объединяют общие черты лица, по которым их можно было бы отнести к правонарушителям. Современные ученые попытались доказать эту теорию с помощью возможностей искусственного интеллекта.

imageЯрым сторонником антропологической теории был известный итальянский криминалист Чезаре Ломброзо. Он считал, что преступники были в большей степени, чем законопослушные граждане, похожи на человекообразных обезьян. Он был убежден, что можно определить обезьяньи черты: скошенный лоб, специфическое строение ушных раковин, различные асимметрии лица и длинные руки. Чтобы доказать свою точку зрения, он провел много измерений, хотя и не делал статистический анализ этих данных.

Это упущение в конечном итоге развалило его теорию. Английский криминалист Чарльз Горинг опроверг взгляды Ломброзо. Он проанализировал всю информацию, связанную с физическими отклонениями преступников и законопослушных граждан, и не обнаружил никакой статистической закономерности.Читать полностью »

Недавно ZlodeiBaal опубликовал статью «Нейрореволюция в головах и сёлах», в которой привел обзор возможностей современных нейронных сетей. Самым интересным, на мой взгляд, является подход с использованием сверточных сетей для сегментации изображений, про этот подход и пойдет речь в статье.

segnet.png

Уже давно появилось желание изучить сверточные сети и узнать что-то новое, к тому же под рукой есть несколько последних Tesla K40 с 12Гб памяти, Tesla c2050, обычные видеокарты, Jetson TK1 и ноутбук с мобильной GT525M, интереснее всего конечно попробовать на TK1, так как его можно использовать практически везде, хоть на столб фонарный повесить. Самое первое с чего начал, это распознавание цифр, тут конечно удивить нечем, цифры уже давно неплохо распознаются сетями, но при этом постоянно возникает потребность в новых приложениях, которые должны что-то распознавать: номера домов, номера автомобилей, номера вагонов и т.д. Все бы хорошо, но задача распознавания цифр является лишь частью более общих задач.
Читать полностью »

В последнее время всё чаще и чаще слышишь мнение, что сейчас происходит технологическая революция. Бытует мнение, что мир стремительно меняется.
Нейрореволюция в головах и сёлах - 1
На мой взгляд такое и правда происходит. И одна из главных движущих сил — новые алгоритмы обучения, позволяющие обрабатывать большие объёмы информации. Современные разработки в области компьютерного зрения и алгоритмов машинного обучения могут быстро принимать решения с точностью не хуже профессионалов.
Я работаю в области связанной с анализом изображений. Это одна из областей которую новые идеи затронули сильнее всего. Одна из таких идей — свёрточные нейронные сети. Четыре года назад с их помощью впервые начали выигрывать конкурсы по обработке изображений. Победы не остались незамеченными. Нейронными сетями, до тех пор стоящими на вторых ролях, стали заниматься и пользоваться десятки тысяч последователей. В результате, полтора-два года назад начался бум, породивший множество идей, алгоритмов, статей.
В своём рассказе я сделаю обзор тех идей, которые появились за последние пару лет и зацепили мою тематику. Почему происходящее — революция и чего от неё ждать.
Кто лишиться в ближайшие лет десять работы, а у кого будут новые перспективные вакансии.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js