Разберём основы компьютерного зрения на примерах с котиками, узнаем, почему CV на самом деле совсем не про зрение и научимся делать свёртку.
Рубрика «свёрточная нейросеть»
Компьютерное зрение и котики. Или алгоритмы против человека
2024-09-18 в 13:38, admin, рубрики: CV, Алгоритмы, ИИ, искуственный интеллект, Компьютерное зрение, матанализ, машинное обучение, нейросети, свёрточная нейросетьКогда картинка дороже слов
2023-01-02 в 13:00, admin, рубрики: airbnb, ruvds_перевод, анализ изображений, Блог компании RUVDS.com, искусственный интеллект, Компьютерное зрение, машинное обучение, нейронные сети, обработка изображений, свёрточная нейросетьВладельцы жилья оставляют на сайте Airbnb уникальные предложения аренды по всему миру. На Airbnb есть сотни миллионов сопутствующих фотографий. Фотографии содержат важную информацию о стиле и дизайне, которую сложно передать словами или списком. Поэтому несколько команд сотрудников Airbnb сегодня используют компьютерное зрение (computer vision), чтобы извлекать сведения об удобствах из нашего богатого массива данных, чтобы помогать гостям в удобном поиске предложений, соответствующих их предпочтениям.
В предыдущих постах WIDeText: A Multimodal Deep Learning Framework, Categorizing Listing Photos at Airbnb и Amenity Detection and Beyond — New Frontiers of Computer Vision at Airbnb мы рассказали о том, как используем компьютерное зрение для категоризации помещений и выявления удобств, чтобы сопоставлять фотографии предложений с таксономией дискретных концепций. В этом посте мы расскажем о том, как Airbnb использует эстетику и эмбеддинги изображений для оптимизации различных поверхностей продукта, включая содержимое рекламных объявлений, презентации и рекомендаций позиций.Читать полностью »
Глубокое ранжирование для сравнения двух изображений
2019-06-27 в 12:30, admin, рубрики: big data, data mining, глубокое машинное обучение, глубокое обучение, свёрточная нейросеть, сверточные нейронные сетиПривет! Представляю вашему вниманию перевод статьи «Image Similarity using Deep Ranking» автора Akarsh Zingade.
Алгоритм Deep Ranking
Понятия "сходства двух изображений" — введено не было, поэтому давайте введем данное понятие хотя бы в рамках статьи.
Сходство двух изображений — это результат сравнения двух изображений по определенным критериям. Его количественная мера определяет степень сходства между диаграммами интенсивности двух изображений. С помощью меры сходства сравниваются какие-то признаки, описывающие изображения. В качестве меры сходства обычно применяется: расстояние Хемминга, евклидово расстояние, расстояние Манхэттена и т. д.
Читать полностью »
Открытая трансляция из главного зала SmartData 2017: речь не про решения — речь про эволюцию
2017-10-20 в 6:09, admin, рубрики: AI, big data, BigData, catboost, cgi, data science, deep learning, Hadoop, machine learning, Блог компании JUG.ru Group, машинное обучение, свёрточная нейросеть, сверточные нейронные сети, свёрточные сети
Как мы уже неоднократно сообщали ранее, в этом году компания JUG.ru Group решила заглянуть в будущее и разобраться, какая необходимость двум серым ящикам взаимодействовать друг с другом впустить в наш мир дозу сакральных знаний по Big Data и машинному обучению — мы сделали конференцию SmartData 2017, которая пройдёт в Питере 21 октября.
Зачем мы собираем конференцию по Big Data и машинному обучению? Потому что не можем не собрать. И чтобы обратить в наше братство как можно большее количество разработчиков, мы традиционно открываем бесплатную онлайн-трансляцию из первого зала конференции.
Итак, бесплатная онлайн-трансляция из главного зала SmartData 2017 начнётся 21 октября 2017 года в 9:30 утра по московскому времени. Только вы, мы и будущее. В этот раз трансляция будет доступна в 2k — доставайте ваши 4k мониторы!
Ссылка на онлайн-трансляцию первого трека конференции SmartData 2017 и краткое описание докладов — под катом.
Читать полностью »
Копируем человеческий мозг: операция «Свертка»
2017-07-20 в 18:42, admin, рубрики: Компьютерное зрение, машинное обучение, нейронные сети, свёрточная нейросетьЧему уже научились сверточные искусственные нейронные сети (ИНС) и как они устроены?
1. Предисловие.
Такие статьи принято начинать с экскурса в историю, дабы описать кто придумал первые ИНС, как они устроены и налить прочую, бесполезную, по большей части, воду. Скучно. Опустим это. Скорее всего вы представляете, хотя бы образно, как устроены простейшие ИНС. Давайте договоримся рассматривать классические нейронные сети (типа перцептрона), в которых есть только нейроны и связи, как черный ящик, у которого есть вход и выход, и который можно натренировать воспроизводить результат некой функции. Нам не важна архитектура этого ящика, она может быть очень разной для разных случаев. Задачи, которые они решают — это регрессия и классификация.
2. Прорыв.
Что же такого произошло в последние годы, что вызвало бурное развитие ИНС?
Ответ очевиден — это технический прогресс и доступность вычислительных мощностей.
Приведу простой и очень наглядный пример:
ИИ научился предсказывать возникновение болезни Альцгеймера из легкого когнитивного расстройства
2017-04-29 в 13:32, admin, рубрики: cnn, болезнь альцгеймера, Здоровье гика, ИИ, искусственный интеллект, свёрточная нейросеть
Сегодня болезнь Альцгеймера — одно из самых коварных заболеваний, её возникновение очень сложно (и дорого) предугадать. И хотя уже развившуюся болезнь остановить нельзя, есть свидетельства того, что выявление на ранней стадии помогает замедлить или остановить болезнь Альцгеймера и деградацию мозга. Поэтому поиск надежного способа определить подверженность риску развития заболевания занимает умы исследователей.
По мере старения человеческого организма когнитивные нарушения неизбежны. С возрастом люди становятся более забывчивыми, чаще теряют ход мыслей и затрудняются принимать решения или выполнять задачи, которые раньше не вызывали трудностей. Врачи называют это мягким когнитивным нарушением. Оно затрагивает большинство людей, когда они становятся старше.
У многих людей с легкими когнитивными нарушениями развивается более тяжелая форма — болезнь Альцгеймера. Человек теряет словарный запас, часто использует неправильные замены слов, перестает признавать близких родственников, теряет базовые навыки самостоятельного ухода за собой и в конечном итоге становится полностью зависим от других людей, которые помогают ему. Большая часть людей с таким диагнозом умирает в течение нескольких лет после обнаружения болезни Альцгеймера.
Интересно то, что такой сценарий ждет не всех людей с легкими когнитивными расстройствами. Со временем состояние пациента может не ухудшаться, а в некоторых случаях даже улучшаться. Поэтому врачи хотят найти способы выявить тех, у кого с большей вероятностью разовьется болезнь Альцгеймера.
Южнокорейские ученые предложили использовать для этой цели глубинное обучение. Технология, которую они разработали, может точно определить людей, у которых болезнь Альцгеймера может развиться в ближайшие три года.Читать полностью »
Нужны ли нам нейронные сети?
2017-04-03 в 11:35, admin, рубрики: Dota2, java, машинное обучение, свёрточная нейросетьИли повесть о том, как я сделал распознавания изображений с помощью свёрточной нейронной сети без нейронной сети. Интересно? Тогда прошу под кат.
Читать полностью »
Как выглядят глубокие нейронные сети и почему они требуют так много памяти
2017-03-27 в 13:30, admin, рубрики: DNN, искусственный интеллект, Научно-популярное, нейронные сети, свёрточная нейросеть
Сегодня граф – один из самых приемлемых способов описать модели, созданные в системе машинного обучения. Эти вычислительные графики составлены из вершин-нейронов, соединенных ребрами-синапсами, которые описывают связи между вершинами.
В отличие скалярного центрального или векторного графического процессора, IPU – новый тип процессоров, спроектированный для машинного обучения, позволяет строить такие графы. Компьютер, который предназначен для управления графами – идеальная машина для вычислительных моделей графов, созданных в рамках машинного обучения.
Один из самых простых способов, чтобы описать процесс работы машинного интеллекта – это визуализировать его. Команда разработчиков компании Graphcore создала коллекцию таких изображений, отображаемых на IPU. В основу легло программное обеспечение Poplar, которое визуализирует работу искусственного интеллекта. Исследователи из этой компании также выяснили, почему глубокие сети требуют так много памяти, и какие пути решения проблемы существуют.Читать полностью »
Deep Learning: Сравнение фреймворков для символьного глубокого обучения
2016-10-25 в 7:10, admin, рубрики: android, AWS, c++, caffe, deep learning, framework, iOS, javascript, Julia, machine learning, Matlab, microsoft, mxnet, OS X, python, R, scala, TensorFlow, theano, Ubuntu, windows, Алгоритмы, Блог компании Microsoft, глубокое обучение, машинное обучение, нейронные сети, рекуррентная нейронная сеть, рекуррентная нейросеть, свёрточная нейросеть, фрейморкПредставляем вам перевод серии статей посвященных глубокому обучению. В первой части описан выбор фреймворка с отрытым кодом для символьного глубокого обучения, между MXNET, TensorFlow, Theano. Автор подробно сравнивает преимущества и недостатки каждого из них. В следующих частях вы узнаете о тонкой настройке глубоких сверточных сетей, а также о сочетании глубокой сверточной нейронной сети с рекуррентной нейронной сетью.
Нейросеть машинного зрения обучают на реалистичных компьютерных играх
2016-09-12 в 11:14, admin, рубрики: игры, искусственный интеллект, классификация, распознавание объектов, робототехника, свёрточная нейросеть
Кадры из компьютерной игры Grand Theft Auto V и семантическая разметка для обучения нейросети машинного зрения
Нейросети ставят новые рекорды почти на всех соревнованиях по компьютерному зрению, а также всё шире используются в других приложениях ИИ. Один из ключевых компонентов такой невероятной эффективности нейросетей — доступность больших наборов данных для их обучения и оценки. Например, для оценки современных нейросетей используется Imagenet Large Scale Visual Recognition Challenge (ILSVRC) с более чем 1 миллионом изображений. Но судя по последним результатам (ResNet показател результат всего лишь 3,57% ошибок), скоро исследователям придётся составлять более обширные наборы данных. А потом — ещё более обширные. Между прочим, аннотирование таких фотографий — немалая работа, часть которой приходится делать вручную.
Некоторые разработчики систем компьютерного зрения предлагают альтернативный способ обучения и проверки таких систем. Вместо ручного аннотирования тренировочных изображений они используют синтезированные кадры из реалистичных компьютерных игр.
Читать полностью »