Рубрика «SVM» - 2

Требуемые знания: знакомство с методами линейной бинарной классификации(e.g. SVM(см. SVM Tutorial)), линейная алгебра, линейное программирование

Рассмотрим линейную задачу бинарной классификации(если задача линейно неразделима, её можно свести к таковой с помощью симметричного интегрального L-2 ядра(см. SVM)). imageПри решении такой задачи классифицируемые элементы(далее образцы) представляются в виде элементов векторного пространства размерности n. На практике в таких задачах n может быть чрезвычайно большим, например для задачи классификации генов оно может исчисляться десятками тысяч. Большая размерность влечёт, по-мимо высокого времени вычисления, потенциально высокую погрешность численных рассчётов. Кроме того использование большой размерности может требовать больших финансовых затрат(на проведение опытов). Постановка вопроса такова: можно ли и как уменьшить n отбрасыванием незначимых компонент образцов так, чтобы образцы разделялись «не хуже» в новом пространстве(эмпирическая ошибка не возросла или, что тоже самое, в новом пространстве образцы оставались линейно разделимы) или «не сильно хуже».
В своей статье я хочу для начала провести краткий обзор метода из этой статьи Gene_Selection_for_Cancer_Classification_using, после чего предложить свой метод.
Читать полностью »

Метод опорных векторов для нахождения полиморфизмов в геноме Статья 2013-ого года «A support vector machine for identification of single-nucleotide polymorphisms from next-generation sequencing data» (O'Fallon, Wooderchak-Donahue, Crockett) предлагает новый метод определения полиформизмов в геноме на основе применения метода опорных векторов (SVM). Хотя ранее в статье 2011-ого года «A framework for variation discovery and genotyping using next-generation DNA sequencing data» уже описывалось применение методов машинного обучения для определения однонуклеотидных полиморфизмов (SNP-ов, снипов), подход, основанный на использовании SVM, описан впервые в данной статье.

Определение полиморфизмов в геноме является важной (например, для полногеномного поиска ассоциаций aka GWAS), но нетривиальной задачей. Приходится учитывать, что многие организмы гетерозиготны, а также, что данные могут содержать ошибочную информацию.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js