Законы физики не меняются от смены точки зрения. Однако эта идея помогает компьютерам распознавать определённые особенности в искривлённом пространстве высших измерений.
Компьютеры учатся водить автомобили, обыгрывают чемпионов мира в настольные игры, и даже пишут прозу. По большей части революция ИИ зиждется на возможностях одного типа искусственной нейронной сети, схема работы которой вдохновлена связанными друг с другом слоями нейронов в зрительной коре мозга млекопитающих. Так называемые «свёрточные нейронные сети» (СНС) оказались удивительно хорошо приспособленными к поиску закономерностей в двумерных данных – особенно в таких задачах компьютерного зрения, как распознавание рукописных слов или объектов на цифровых изображениях.
Но в применении к наборам данных, не сводимых к геометрии на плоскости – к примеру, к моделям неправильных форм, используемых в трёхмерной компьютерной анимации, к облакам точек, генерируемых робомобилями для разметки окружающего их мира – эта эффективная архитектура машинного обучения (МО) уже не так хорошо работает. В 2016 году появилась новая дисциплина, геометрическое глубокое обучение (ГГО), целью которой стало вывести СНС за пределы плоскости.
Читать полностью »