Рубрика «стохастические процессы»

Начало здесь.

Disclaimer 1

Я математик, а не врач. По всем вопросам здоровья, коронавирусов и смысла жизни консультируйтесь с медиками, не будьте глупыми людьми.

Disclaimer 2

По этическим соображениям, результаты работы модели, калиброванной по параметрам COVID-19, публиковаться не будут. Возможно, вы с моим решением не согласны, но вам придется с этим жить.

Как мы увидели в прошлой части, режим самоизоляции достаточно эффективен, в частности он сбивает экспоненциальный рост числа заболевших до степенного и тем самым позволяет снизить нагрузку на здравоохранения до приемлемой (“flatten the curve”, ага). Тем не менее, режим самоизоляции длится очень долго, наносит огромный ущерб экономике и возникает резонный вопрос: нельзя ли обойтись пусть более жесткими, но краткосрочными мерами?

Для наглядности экспериментов я слегка модифицировал инфекционный агент, сделав его чуть менее заразным, для большей иллюстративности интересующих нас эффектов. Помимо этого, я снизил порог насыщения минздрава до 5% популяции (это все равно очень и очень много). И да, чтоб не слишком ранить чувствительные души, шанс смерти индивидуума, которому «не досталось койки», вырастает теперь в три раза, а не в десять, как раньше. Цените мой гуманизм! Остальные параметры такие же (самое важное: инкубационный период, когда пацак заразен, длится 10 дней и столько же длится период лечения).
Читать полностью »

Disclaimer 1.
Я математик, НЕ ВРАЧ и не являюсь профильным специалистом-эпидемиологом, а свою последнюю научную работу на тему матмоделирования эпидемий написал без малого 20 лет назад. По всем вопросам здоровья, коронавирусов и смысла жизни консультируйтесь с лечащим врачом, не будьте глупыми людьми.

Disclaimer 2.
Ниже будет некоторое количество графиков. Перед их построением я умышленно декалибровал и упростил модель, отстроившись от параметров COVID-19. Приведенные графики демонстрируют развитие эпидемии некоторого условного вируса в некоторой условной популяции в условном времени. Не делайте предсказаний о ходе текущей пандемии, опираясь на мои картинки, не будьте глупыми людьми.

Ну, а теперь — поехали! По понятным причинам, ныне изрядно подскочил интерес ко всякому пандемическому, и всевозможные математические и не очень математические модели бродят по соцсетям стаями. Число же эпидемиологов и специалистов по системам дифференциальных уравнений и вовсе превысило все мыслимые пределы. Тем не менее, во всем этом информационном буйстве странным образом обойдены молчанием перколяционные, они же стохастические имитационные, модели. Этот недостаток мы сейчас немедленно исправим. Кстати, впервые о подобных моделях (как и многом другом) я прочитал в замечательной книжке Гулда и Тобочника «Компьютерное моделирование в физике».

Читать полностью »

image

В 1998 году Лоуренс Пейдж, Сергей Брин, Раджив Мотвани и Терри Виноград опубликовали статью «The PageRank Citation Ranking: Bringing Order to the Web», в которой описали знаменитый теперь алгоритм PageRank, ставший фундаментом Google. Спустя чуть менее два десятка лет Google стал гигантом, и даже несмотря на то, что его алгоритм сильно эволюционировал, PageRank по-прежнему является «символом» алгоритмов ранжирования Google (хотя только немногие люди могут действительно сказать, какой вес он сегодня занимает в алгоритме).

С теоретической точки зрения интересно заметить, что одна из стандартных интерпретаций алгоритма PageRank основывается на простом, но фундаментальном понятии цепей Маркова. Из статьи мы увидим, что цепи Маркова — это мощные инструменты стохастического моделирования, которые могут быть полезны любому эксперту по аналитическим данным (data scientist). В частности, мы ответим на такие базовые вопросы: что такое цепи Маркова, какими хорошими свойствами они обладают, и что с их помощью можно делать?
Читать полностью »

Обклеенный десятками датчиков «объект исследований» при натурных динамических испытаниях (например, при исследовании виброактивности транспортного средства) легко обеспечивает нас большим объемом полученных данных, но вот что с ними делать, зачастую не очень-то ясно. То же самое — при симуляционом моделировании динамических процессов систем с большим количеством степеней свободы.

Это может быть не совсем понятно тем, кто не сталкивается с проблемой регулярно, но — отсматривать соответствующую анимацию процесса, стохастического во времени и пространстве, как правило, почти бессмысленно. Где сломается или почему так трясет — обычно «не видно». Что придумывали кроме анимации, ниже расскажу, а порекомендую вот что.

Путем элементарнешей процедуры можно получить и сами пространственные «формы» колебаний, причем именно реально проявляющиеся в данных условиях нагружения, и интенсивности их проявления (дисперсии; при желании — и сами процессы).

Исходный
многоканальный
процесс

image

Разложение
image
image
image

Рис.1 Разложение многоканального отклика по псевдоформам. «Струна в вязкой среде»(см.рис.2)

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js