Рубрика «statistical data processing»

Начав выбирать себе цвет для покраски стены в комнате, я столкнулся с интересной вещью. Весь этот процесс с самого начала начал напоминать работу над каким-нибудь IT-ML-Blah-blah-blah-аналитическим проектом.

Тут есть и заказчик, который не очень понимает, что именно он хочет, но хочет, чтобы все было хорошо и ему нравилось. Еще есть несколько заинтересованных лиц со стороны заказчика, которые не могут договориться по вопросу, что такое «хорошо». Есть какие-то переформулировки задачи, которые под большим вопросом релевантны этому самому «хорошо», но по-крайней мере как-то решаемы. Есть подбор методов решения и попытки их реализовывать. Есть итеративность, которая имплицитно, но монотонно, ведет к какому-то решению, которое бы всех устроило. И есть некоторые странные выводы, которые бы с трудом можно было бы сделать в «реальном» проекте, потому что из-за общей нервозности и участия в процессе денег фокус внимания редко останавливается на этих местах процесса.

Data-driven decision на примере выбора цвета для покраски стен - 1


Читать полностью »

image

В этой статье речь пойдет о логистической регрессии и ее реализации в одном из наиболее производительных пакетов машинного обучения "R" — "XGboost" (Extreme Gradient Boosting).
В реальной жизни мы довольно часто сталкиваемся с классом задач, где объектом предсказания является номинативная переменная с двумя градациями, когда нам необходимо предсказать результат некого события или принять решения в бинарном выражении на основании модели данных. Например, если мы оцениваем ситуацию на рынке и нашей целью является принятие однозначного решения, имеет ли смысл инвестировать в определенный инструмент в данный момент времени, купит ли покупатель исследуемый продукт или нет, расплатится ли заемщик по кредиту или уволится ли сотрудник из компании в ближайшее время и.т.д. Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js