Рубрика «спины»

Парамагноны и магноны: энергия из тепла - 1

Оглянитесь вокруг, что вы видите? Дома, машины, деревья, людей и т.д. Все куда-то бегут, все куда-то спешат. Город, напоминающий муравейник, особенно в час пик, всегда наполнен движением. И такая же картина наблюдается не только в «большом» мире, но и на атомарном уровне, где неисчислимое множество частиц движутся навстречу друг другу, сталкиваются, отдаляются и вновь находят нового партнера для своего невероятно сложного и порой столь кратковременно танца. Отбросим в сторону утрирование и поэтичность и поговорим сегодня об исследовании, в котором международная команда ученых из университета штата Северная Каролина, Ок-Риджской национальной лаборатории, университета штата Огайо и Китайской академии наук доказали, что парамагноны могут преобразовывать разницу температур в электрическое напряжение. Что такое парамагноны, в чем их уникальная особенность, как ученые реализовали свой необычный «генератор» и насколько он эффективен? Об этом мы узнаем из доклада исследовательской группы. Поехали.Читать полностью »

Квант, или туда и обратно: новый алгоритм изучения квантово-классического перехода - 1

Многие считают, что сложнее классической физики может быть только квантовая. Однако куда сложнее изучать системы, которые находятся, так сказать, на стыке этих двух миров. Если в квантовую систему добавлять все больше и больше частиц, то она начнет терять свои квантовые свойства и превращаться в более классическую. Этот процесс именуют квантово-классическим переходом. Чтобы изучить такую систему, классических компьютеров будет недостаточно, потому ученые из Лос-Аламосской национальной лаборатории предложили свой собственный алгоритм, который в сопряжении с квантовыми компьютерами из пары сотен кубитов сможет разгадать тайны квантово-классического перехода. Как работает алгоритм, почему меньше формул значит лучше и какое применение сего алгоритма на практике? Об этом и не только мы узнаем из доклада исследовательской группы. Поехали.Читать полностью »

Не Portal 3, но близко: квантовая телепортация информации внутри алмаза - 1

Мы все знакомы с различными супергероями и их уникальными способностями, хотим мы того или нет. Потому вопрос о том, какую бы вы хотели иметь суперспособность, не такой и редкий. Кто-то хотел бы быть невероятно сильным, как Халк, кто-то — быстрым, как Флеш, а кто-то не отказался бы от суперспособности Бэтмена — денег. А вот те, кто хоть раз находился в пробке длиной от Марса до Венеры, все бы отдали за возможность телепортироваться. Концепция телепортации звучит весьма увлекательно с точки зрения научной фантастики, однако в реальности эта суперспособность также существует, но наделены ею далеко не люди. Сегодня мы с вами познакомимся с исследованием, в котором ученые из Йокогамского университета (Япония) смогли телепортировать информацию внутри алмаза. Как ученые это сделали, каким боком тут квантовая физика, и что это значит для будущего технологий хранения данных? Ответы ждут нас в докладе ученых. Поехали.Читать полностью »

Быстрее и точнее: гибридная система разнотипных кубитов - 1

Некоторые идеи ярко зарождаются и быстро умирают ввиду сложности, дороговизны или даже ненужности реализации. Акулы-убийцы с лазерными установками на голове — звучит очень круто, очень сложно и невероятно нелепо. Однако некоторые идеи в своей реализации обещают если не «золотые горы», то как минимум горшочек золота. Это касается и квантовых компьютеров, которые обещают быть супер мощными, супер быстрыми и очень энергоэффективными. Звучит заманчиво, не так ли? Вот и многие ученые думают так же. Реализация квантовых вычислений требует решения многих проблем. И сегодня мы с вами будем знакомиться с исследованием, в котором ученые решили улучшить показатели скорости посредством создания так называемого кубитового гибрида. Что это такое, из чего оно состоит и как работает мы узнаем из доклада исследовательской группы. Поехали.Читать полностью »

Квантовый процессор на базе спинового резонанса и манипуляций с синглетной-триплетной системой - 1

Ох уж эти квантовые технологии. Они заполонили умы ученых по всему миру, как Pokemon GO в свое время заполонил умы пользователей смартфонов. Сравнение конечно не самое хорошее, ибо первые принесут пользу, второе — принесло толпы людей в парках, но далеко не ради свежего воздуха или пикника. Сегодня мы будем разбираться в исследовании, нацеленом на создании масштабируемого квантового процессора, умеющего находить и исправлять ошибки. Для работы такого процессора требуется контроль над множеством кубитов (квантовых битов) параллельно, пока протекает процесс обнаружения ошибок среди выбранных кубитов. То есть жонглируем одной рукой, а второй показываем карточные фокусы. Задача, мягко говоря, не из легких. Давайте же узнаем как ученые из Австралии смогли реализовать такой сложный замысел на практике. Поехали.Читать полностью »

Назад в будущее: практическое подтверждение теории Томонаги — Латтинжера спустя почти 56 лет - 1

Многие технологии сильно изменились с момента своего изобретения. Их совершенствование подпитывалось различными исследованиями и открытиями, каждое из которых находило новые способы реализации, будь то материалы, модели системы или новые алгоритмы. Визуально одним из самых ярких примеров являются вычислительные устройства. Когда-то они занимали целые комнаты и весили по несколько тонн, а сейчас у каждого из нас есть мобильный телефон, чья мощность в разы превышает те габаритные компьютеры. Но процесс минимизации устройств и их составляющих далек от завершения, ибо пока есть куда уменьшать, ученые будут изобретать новые способы чтобы этого достичь. Сегодня мы поговорим об исследовании, которое как раз может сильно повлиять на процесс минимизации, а точнее об опытном подтверждении теории одномерных электронов, которой уже без малого 56 лет. Поехали.Читать полностью »

Квантовый компьютер: один фотон, чтобы править всеми - 1

История вычислительной техники, которую мы сейчас называем просто сервер или компьютер, началась много веков назад. С течением времени и развитием технологий совершенствовались и компьютеры. Улучшалась производительность, скорость работы и даже внешний вид. Любой компьютер в своей основе реализует определенные законы естественных наук, таких как физика и химия. Углубляясь в любую из этих наук, исследователи находят новые и новые пути совершенствования вычислительных систем. Сегодня мы будем знакомиться с исследованием, нацеленным на реализацию применения фотонов в квантовых компьютерах. Поехали.Читать полностью »

Читатель спрашивает:

Когда я читал ваш ответ по поводу лазеров, то я вспомнил свой давний вопрос по поводу принципа Паули. Как я понимаю, у двух электронов в молекуле водорода спины должны быть противоположными. Значит ли это, что при формировании молекулы электроны меняют спин, или же сформировать молекулу могут только электроны с противоположными спинами?

В этом вопросе заключено очень многое, поэтому начнём с принципа запрета Паули.

image

Несмотря на большое разнообразие разных типов элементарных частиц, существующих во Вселенной, их все можно поделить на два типа:

  • фермионы – частицы с полуцелым спином: ±1/2, ±3/2, ±5/2,..
  • бозоны – частицы с целым спином: 0, ±1, ±2,..

Что интересно, составные частицы тоже ведут себя либо как фермионы, либо как бозоны. Протоны и нейтроны ведут себя как фермионы со спинами ±1/2, как и электроны. У каждой частицы есть набор квантовых состояний, которые она может занять, с дискретными уровнями энергии, моментами импульса, направлениями спинов и т.д.

Основная разница между фермионами и бозонами – если у вас есть две идентичные частицы, то туда же можно отправить сколько угодно бозонов в том же квантовом состоянии, но идентичные фермионы не могут занимать одно и то же состояние.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js