Рубрика «спектральная плотность»

Общеизвестно, что большинство временных рядов, с которыми приходится иметь дело исследователю, являются нестационарными, и их анализ ощутимо сложнее, чем изучение стационарных процессов. Поскольку интерес к вейвлетам, похоже, пошел на убыль, полезно обсудить некоторые иные «нестационарные» инструменты, пригодные, в первую очередь, для оценки мгновенных частот, а также для оценки мгновенных спектров.

В первую очередь есть смысл вспомнить об «аналитическом сигнале». Ниже «An-моделью» именуются как раз нахождение мгновенных импеданса и мощности тестового сигнала после достройки его мнимой частью (сдвинутой по фазе на π/2).

Но не всегда есть возможность возиться с преобразованием Гилберта. Ранее уже упоминалось об авторегрессионном способе спектрального оценивания, пригодном для работы с короткими последовательностями. Под «AR-моделью» здесь будет подразумеваться исследование коротких (из 5 сэмплов) перекрывающихся фрагментов исходного сигнала с целью определения коэффициентов авторегрессии 2-го порядка, нахождение по ним «полюсов» модели и т.д.

imageЧитать полностью »

Методы спектрального оценивания стационарных случайных процессов, основанные на быстром преобразовании Фурье (БПФ), хорошо известны и широко применяются в инженерной практике. К их недостаткам следует отнести, в частности, высокую дисперсию (низкую точность) оценки при недостаточно длительном интервале наблюдения за процессом, что визуально обычно проявляется в сильной «изрезанности» графика спектральной плотности мощности(СПМ). Одним из альтернативных методов спектрального оценивания является авторегрессионный метод, рассмотренный на примере ниже, который в инженерной практике известен гораздо меньше. Метод во многих случаях позволяет сравнительно просто получить гораздо более качественную оценку СПМ (рис.1), а иногда и более глубокие сведения об исследуемом случайном процессе.

image
Рис.1 Классическая и авторегрессионная оценка СПМ «короткого» процесса
Читать полностью »

Ниже будет сказано несколько слов об известной вообще, но, чаще всего довольно неожиданной для инженерных работников дискретно-временной альтернативе математическим моделям в виде линейных дифференциальных уравнений, а именно, моделям авторегрессии — скользящего среднего, и весьма необычным перспективам такого моделирования, возможности которого значительно превышают то, что привыкли получать от ЛДУ.

В списке потенциальных возможностей технологии — анализ систем с недоступным для наблюдения входящим возмущением, определение резонансных свойств таких систем, спектра и самого процесса внешнего возбуждения, спектральное оценивание процессов по их коротким реализациям, моделирование поведения систем при малой частоте дискретизации по времени и т.п.

image

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js