Рубрика «spark» - 5

Сервисы видеоконференций давно пользуются популярностью в крупных компаниях и даже в некоторых мелких фирмах. Для их проведения используются разные технологии, в самом простом варианте это может быть, например, конференция в Skype. Но есть и системы, которые предлагают куда более широкие возможности, фактически «все в одном». Одна из них — облачное решение для совместной работы Cisco Spark.

Облачное решение для совместной работы Cisco Spark: обзор и настройка - 1

Читать полностью »

enter image description here

Привет! Меня зовут Александр Крашенинников, я руковожу DataTeam в Badoo. Сегодня я поделюсь с вами простой и элегантной утилитой для распределённого выполнения команд в стиле xargs, а заодно расскажу историю её возникновения.

Наш отдел BI работает с объёмами данных, для обработки которых требуются ресурсы более чем одной машины. В наших процессах ETL (Extract Transform Load) в ход идут привычные миру Big Data распределённые системы Hadoop и Spark в связке с OLAP-базой Exasol. Использование этих инструментов позволяет нам горизонтально масштабироваться как по дисковому пространству, так и по CPU/ RAM.

Безусловно, в наших процессах ETL существуют не только тяжеловесные задачи на кластере, но и машинерия попроще. Широкий пласт задач решается одиночными PHP/ Python-скриптами без привлечения гигабайтов оперативной памяти и дюжины жёстких дисков. Но в один прекрасный день нам потребовалось адаптировать одну CPU-bound задачу для выполнения в 250 параллельных инстансов. Настала пора маленькому Python-скрипту покинуть пределы родного хоста и устремиться в большой кластер!

Читать полностью »

Обзор (и видеозаписи) лучших докладов Java-конференции JPoint 2016: BigData, кишки JVM и паззлеры - 1

В апреле в Москве прошла JPoint 2016 – крупнейшая Java-конференция в России. Напомню, что на конференции было 50 докладов, которые шли в 4 треках в течение двух дней. В сентябре мы открыли доступ к видео для наших читателей, однако руки всё никак не доходили до публикации топ-10 докладов на Хабре.

Чтобы определить, какие спикеры понравились участникам конференции, мы собираем фидбеки, на основании которых получаем весьма достоверную взвешенную оценку для каждого из докладов.

Конечно, какие-то доклады оказываются лучше, какие хуже. Но в этом посте речь пойдет о 10 жемчужинах, лучших докладах, оценка каждого из которых оказалах выше 4.6 по пятибалльной шкале. Ссылка на остальные доклады по катом, так что вам будет чем заняться до Нового Года:)
Читать полностью »

Пусть Жираф был не прав,
Но виновен не Жираф,
А тот, кто крикнул из ветвей:
«Жираф большой — ему видней!» (с)

Потребовалось оперативно разобраться с технологией Apache Spark заточенную для использования Big Data. В процессе выяснения активно использовал habrahabr, так что попробую вернуть информационный должок, поделившись приобретенным опытом.

А именно: установкой системы с нуля, настройкой и собственно программированием кода решающего задачу обработки данных для создания модели, вычисляющей вероятность банкротства клиента банка по набору таких признаков как сумма кредита, ставка и т.д.

Больших данных вроде как должно быть много, но почему-то не просто найти то злачное место, где их все щупают. Сначала попробовал вариант с ambari, но на моей Window7 валились ошибки настроек сетевого моста. В итоге прокатил вариант с преднастроенной виртуальной машиной от Cloudera (CDH). Просто устанавливаем VirtualBox, запускаем скачанный файл, указываем основные параметры (память, место) и через 5 минут достопочтенный джин Apache Hadoop жаждет ваших указаний.

Несколько слов, почему именно Spark. Насколько я понимаю, ключевые отличия от изначальной MapReduce в том, что данные удерживаются в памяти, вместо сброса на диск, что дает ускорение во много раз. Но, пожалуй, более важны реализации целого ряда статистических функций и удобным интерфейсом для загрузки/обработки данных.

Дальше собственно код для решения следующей задачи. Есть реально большие данные (ибо рука очень устает скролить эти 2000 строк) в формате:

Маленький код для больших данных или Apache Spark за 3 дня - 1

Есть предположение, что дефолт как-то связан с остальными параметрами (кроме первого, к уважаемым Ивановым1…N претензий нет) и нужно построить модель линейной регрессии. Прежде чем начать, стоит оговориться, что это мой первый код на Java, сам я работаю аналитиком и вообще это мой первый запуск Eclipse, настройка Maven и т.д. Так что не стоит ждать изысканных чудес, ниже решение задачи в лоб тем способом, который почему-то заработал. Поехали:
Читать полностью »

Одной из самых важных новостей компании Oracle в 2015 году стал выход нового процессора SPARC M7 и линейки серверов на его основе. В эту линейку вошли серверы T-серии (T7-1, T7-2, T7-4) и серверы M-серии (M7-8, M7-16).

Помимо уникальных физических характеристик (частота 4,13 гГц, 32 ядра, до 256 потоков) на процессоре M7 заявлена возможность переноса части SQL-логики базы данных Oracle на специальные сопроцессоры DAX (Data Analytics Accelerator). Эта технология получила название «SQL in Silicon» – с ней новый процессор M7 позиционируется как первый процессор в истории ИТ, в том числе оптимизированный под задачи Oracle Database.

В начале 2016 года стало возможно тестирование серверов T-серии, и мы одними из первых в России параллельно протестировали сразу два тестовых сервера T7-2 (по два процессора M7 в каждом).
Читать полностью »

Исторически во многих уголках Яндекса разрабатывались свои системы хранения и обработки больших объемов данных — с учетом специфики конкретных проектов. При такой разработке в приоритете всегда была эффективность, масштабируемость и надежность, поэтому на удобные интерфейсы для использования подобных систем времени, как правило, не оставалось. Полтора года назад разработку крупных инфраструктурных компонентов выделили из продуктовых команд в отдельное направление. Цели были следующими: начать двигаться быстрее, уменьшить дублирование среди схожих систем и снизить порог входа новых внутренних пользователей.

Как писать меньше кода для MR, или Зачем миру ещё один язык запросов? История Yandex Query Language - 1

Очень скоро мы поняли, что тут мог бы здорово помочь общий высокоуровневый язык запросов, который бы предоставлял единообразный доступ к уже имеющимся системам, а также избавлял от необходимости заново реализовывать типовые абстракции на низкоуровневых примитивах, принятых в этих системах. Так началась разработка Yandex Query Language (YQL) — универсального декларативного языка запросов к системам хранения и обработки данных. (Сразу скажу, что мы знаем, что это уже не первая штука в мире, которая называется YQL, но мы решили, что это делу не мешает, и оставили название.)

В преддверии нашей встречи, которая будет посвящена инфраструктуре Яндекса, мы решили рассказать о YQL читателям Хабрахабра.

Читать полностью »

Видеозапись вебинара «Инструменты для работы Data Scientist» - 1

Вчера наша команда провела вебинар на тему «Инструменты для работы Data Scientist». В его рамках мы рассмотрели, кто такой data scientist и какими инструментами он пользуется. Поговорили о платформе FlyElephant и чем она может быть полезной для работы data scientist’а.
Читать полностью »

Big Data – это проблема. Количество информации растет с каждым днем, и она накапливается как снежный ком. Прекрасно то, что проблема эта имеет решения, только в мире JVM больший данных процессят десятки тысяч проектов.

В 2012 году увидел свет фреймворк Apache Spark, разработанный на Scala и рассчитанный на повышение производительности определенных классов задач в работе с Big Data. Проекту уже 4 года он повзрослел и дорос до версии 2.0, к которой (на самом деле уже начиная с версии 1.3-1.5) имеет мощный и удобный API для работы с Java. Чтобы понять, для кого это все надо, какие именно задачи стоит решать при помощи Spark, а какие не стоит, мы поговорили с Евгением EvgenyBorisov Борисовым, автором тренинга «Welcome to Spark», который пройдет 12-13 октября в Петербурге.

Welcome to Spark… on Java: Интервью с Евгением Борисовым - 1
Читать полностью »

Apache Spark – универсальный инструмент для процессинга больших данных, с которым можно писать в Hadoop с различных СУБД, стримить всякие источники в реальном времени, параллельно делать с данными какую-нибудь сложную обработку, и все это не при помощи каких-то батчей, скриптов и SQL-запросов, а при помощи функционального подхода.

Твоя Data такая большая: Введение в Spark на Java - 1

Про Spark ходит несколько мифов:

  • Spark’y нужен Hadoop: не нужен!
  • Spark’у нужна Scala: не обязательно!

Почему? Смотрите под катом.
Читать полностью »

imageSpark – проект Apache, предназначенный для кластерных вычислений, представляет собой быструю и универсальную среду для обработки данных, в том числе и для машинного обучения. Spark также имеет API и для R(пакет SparkR), который входит в сам дистрибутив Spark. Но, помимо работы с данным API, имеется еще два альтернативных способа работы со Spark в R. Итого, мы имеем три различных способа взаимодействия с кластером Spark. В данном посте приводиться обзор основных возможностей каждого из способов, а также, используя один из вариантов, построим простейшую модель машинного обучения на небольшом объеме текстовых файлов (3,5 ГБ, 14 млн. строк) на кластере Spark развернутого в Azure HDInsight.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js