Рубрика «spark streaming»

Привет! Сегодня мы построим систему, которая будет при помощи Spark Streaming обрабатывать потоки сообщений Apache Kafka и записывать результат обработки в облачную базу данных AWS RDS.

Представим, что некая кредитная организация ставит перед нами задачу обработки входящих транзакций «на лету» по всем своим филиалам. Это может быть сделано с целью оперативного расчета открытой валютой позиции для казначейства, лимитов или финансового результата по сделкам и т.д.

Как реализовать этот кейс без применения магии и волшебных заклинаний — читаем под катом! Поехали!

Apache Kafka и потоковая обработка данных с помощью Spark Streaming - 1

(Источник картинки)
Читать полностью »

Пару месяцев назад я начала изучать Spark, и в какой-то момент столкнулась с проблемой сохранения вычислений Structured Streaming в базе данных Cassandra.

В данном посте я привожу простой пример создания и использования Cassandra Sink для Spark Structured Streaming. Я надеюсь, что пост будет полезен тем, кто недавно начал работать со Spark Structured Streaming и задается вопросом, как выгружать результаты вычислений в базу данных.

Идея приложения очень проста — получить и распарсить сообщения из кафки, выполнить простые трансформации в спарке и сохранить результаты в кассандре.
Читать полностью »

Здравствуйте, коллеги! Напоминаем, что не так давно у нас вышла книга о Spark, а прямо сейчас проходит последнюю корректуру книга о Kafka.

Интеграция Spark Streaming и Kafka - 1

Надеемся, эти книги окажутся достаточно успешными для продолжения темы — например, для перевода и издания литературы по Spark Streaming. Перевод об интеграции этой технологии с Kafka мы и хотели вам сегодня предложить
Читать полностью »

Грузим терабайты бочками или SparkStreaming vs Spring+YARN+Java - 1

В рамках проекта интеграции GridGain и хранилища на базе Hadoop (HDFS + HBASE) мы столкнулись с задачей получения и обработки существенного объема данных, примерно до 80 Тб в день. Это необходимо для построения витрин и для восстановления удаленных в GridGain данных после их выгрузки в наше долговременное хранилище. В общем виде, можно сказать, что мы передаём данные между двумя распределёнными системами обработки данных при помощи распределённой системы передачи данных. Соответственно, мы хотим рассказать о тех проблемах, с которыми столкнулась наша команда при реализации данной задачи и как они были решены.

Так как инструментом интеграции является кафка (весьма подробно об этом инструменте описано в статье Михаила Голованова), естественным и легким решением тут выглядит использование SparkStreaming. Легким, потому что не нужно особо беспокоиться о падениях, переподключениях, коммитах и т.д. Spark известен, как быстрая альтернатива классическому MapReduce, благодаря многочисленным оптимизациям. Нужно лишь настроиться на топик, обработать батч и сохранить в файл, что и было реализовано. Однако в ходе разработки и тестирования была замечена нестабильность работы модуля приема данных. Для того чтобы исключить влияние потенциальных ошибок в коде, был произведен следующий эксперимент. Был выпилен весь функционал обработки сообщений и оставлено только прямое сохранение сразу в avro:
Читать полностью »

В первой части статьи мы рассказали, зачем нужна DDRRE, а также как и при помощи каких инструментов происходит сбор данных. Вторая часть статьи будет посвящена использованию полученного на первом этапе потока данных.
Напомним общую схему системы:
Data Driven Realtime Rule Engine в Wargaming: анализ данных. Часть 2 - 1
Блок RAW Data Collection описан в первой статье и представляет собой набор из standalone-адаптеров.
В основе следующих двух лежит параллельная потоковая обработка данных. В качестве фреймворка используется Spark Streaming. Почему именно он? Было решено, что стоит использовать единый дистрибутив Hadoop – Cloudera, который из коробки включает в себя Spark, HBase и Kafka. К тому же в компании на тот момент уже имелась экспертиза по Spark.
Читать полностью »

Бигдата напирает. Бизнесу уже недостаточно уметь обрабатывать ночью накопленные за день данные и принимать решение с задержкой в сутки. Хотят, чтобы система анализировала данные в режиме онлайн и реагировала быстро на:

  • изменение котировок
  • действия пользователей в онлайн-игре
  • отображала агрегированную информацию из соцсетей в различных проекциях

и т.д. Если вы так не умеете, то смузи уже не нальют.
Интерактивная карта клиентов — Apache Spark Streaming и Яндекс.Карты - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js