Рубрика «spacy»

Получилось так что я купил книжку на английском, в Австралии (автор оттуда и там она дешевле в 3 раза чем у Гугла), но прочитать не смог, очень богатый мир , много странных слов, начал терять контекст истории, читал по 2 страницы в день. Затем на ТГ канале Акимова попалась ссылка на прототип агента по переводу текста , со сслыками в итоге на научные работы и т.д., обрадовавшись полез на гитхаб искать форки и конечно готовую софтину , но почему то она не случилась. спустя два года появились платные сервисы, но не опенсорсная поделка, и я решил собрать хотя бы MVP чтобы проверить идею самостоятельно, потом написатьЧитать полностью »

Про NER написано немало, но этот материал носит прикладной характер. Статья будет полезна тем, кто интересуется NLP и ищет разные подходы для решения узкопрофильных задач, требующих извлечения сущностей из текста.

Для джунов это возможность пройти весь путь — от разметки данных до обучения собственной кастомной NER-модели, попутно понять типичные сложности и ограничения.

Читать полностью »

Русский Маскарад — применение NER для защиты персональных данных - 1

Всем привет! 

На связи команда хакатонщиков “Старые Бауманцы” и я - Саша Зазнобин. 

Читать полностью »

1. Введение

В прошлой статье мы с вами изучили теоретические основы обработки естественного языка (NLP) и теперь готовы перейти к практике. В мире NLP выбор подходящего языка программирования и инструментов играет ключевую роль в успешной реализации проектов. Одним из наиболее популярных языков для решения задач в этой области является Python. Его простота, читаемость и поддержка мощных библиотек делают его идеальным выбором для разработчиков.

Читать полностью »

Распознавание именованных сущностей (Named Entity Recognition, NER) — это одна из самых востребованных задач в обработке естественного языка (NLP). Чтобы создать качественную модель для NER, требуется тщательно размеченная обучающая выборка, а процесс её создания может занять много времени и ресурсов. В этой статье я расскажу о своём пути разметки данных, начиная с использования Open Source инструментов и переходя к Prodigy, профессиональному инструменту для создания обучающих наборов данных.

Почему мы выбрали NER

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js