
Помните, как долго выполняется сложение на бумаге?
¹¹ ¹
6876
+ 3406
------
10282
Начиная с «единиц», мы складываем 6 + 6 = 12, записываем 2 и переносим 1. Затем пошагово двигаемся влево, пока складываемые разряды не закончатся.

Помните, как долго выполняется сложение на бумаге?
¹¹ ¹
6876
+ 3406
------
10282
Начиная с «единиц», мы складываем 6 + 6 = 12, записываем 2 и переносим 1. Затем пошагово двигаемся влево, пока складываемые разряды не закончатся.
Прошлая статья рассказала о двух способах сложения двух двоичных чисел с плавающей запятой без потери точности. Чтобы добиться этого, мы представили сумму c=a+b в виде двух чисел (s,t)=a+b, причём таких, что s — наиболее близкое к a+b точно-представимое число, а t=(a+b)-s — это отсекаемая в результате округления часть, составляющая точную погрешность. У читателей был вопрос: а можно ли достаточно точно сложить массив чисел типа double? Оказывается, можно! Но только, вероятно, не всегда и не абсолютно… и не алгоритмом Кэхэна, который тогда вспоминали в комментариях. За подробностями прошу под кат, где мы и найдём приложение тому, о чём я рассказал в прошлый раз.

Здравствуйте, друзья, как вы думаете, если мы напишем такой код:
s = a+b;
z = s-a;
t = b-z;
то не кажется ли вам, что в результате его выполнения получится, что t=0? С точки зрения привычной математики действительных чисел это и правда так, а вот с точки зрения арифметики с плавающей запятой в переменной t будет кое-что другое. Там будет то, что спасает нас от потери точности при сложении чисел и
. Кого интересует данная тема, прошу под кат.

Существует классическая задача для собеседований, часто формулируемая следующим образом:
Имеется массив натуральных чисел. Каждое из чисел присутствует в массиве ровно два раза, и только одно из чисел не имеет пары. Необходимо предложить алгоритм, который за минимальное число проходов по массиву определяет число, не имеющее пары.
Полагаю, никто не обидится, если я тут же приведу и решение задачи: уникальный элемент будет совпадать с -суммой всех элементов массива, вычисляемой за линейное время.
Предлагаю поразмыслить над другой вариацией данной задачи. Что, если все элементы, кроме искомого, будут присутствовать в массиве не парами, а тройками? Насколько при этом усложнится решение и останется ли оно линейным?