Рубрика «sklearn»

Как посчитать количество звёзд на фото? - 1

Всем привет!

Недавно я участвовал в олимпиаде по искусственному интеллекту на Python и там было много интересных задач, но самая интересная это про звезды на небе: "Дано фото звездного неба с земли. Задача: определить количество звёзд на небе"

Вроде бы не сложно, если фотка только со звездами, например:

Читать полностью »

Детектирование аномалий — интересная задача машинного обучения. Не существует какого-то определенного способа ее решения, так как каждый набор данных имеет свои особенности. Но в то же время есть несколько подходов, которые помогают добиться успеха. Я хочу рассказать про один из таких подходов — автоенкодеры.

Читать полностью »

Недавно мне на глаза попался датасет на Kaggle с данными о 45 тысячах фильмов с Full MovieLens Dataset. Данные содержали не только информацию об актерах, съемочной команде, сюжете и т.п., но и оценки, выставленные фильмам пользователями ресурса (26 миллионов оценок от 270 тыс.пользователей).

Стандартная задача для таких данных — это рекомендательная система. Но мне в голову почему-то пришло прогнозирование рейтинга фильма на основе информации, доступной до его выхода. Я не знаток кинематографа, и поэтому обычно ориентируюсь на рецензии, выбирая что посмотреть из новинок. Но ведь рецензенты тоже несколько biased — они-то смотрят гораздо больше разных фильмов, чем рядовой зритель. Поэтому спрогнозировать, как оценит фильм обычная публика, показалось занятным. Читать полностью »

Можно ли по цитате определить, кто из политиков ее автор? Украинская НКО Vox Ukraine делает проект VoxCheck, в рамках которого проверяет высказывания наиболее рейтинговых политиков. Недавно они выложили всю базу проверенных цитат. Я как раз слушаю курсы по NLP и решила проверить, насколько точно по тексту цитаты можно определить ее автора.

Disclaimer. Эта статья написана из интереса к теме и желания опробовать изученный материал на практике, без претензий на максимально точный и детальный анализ.
Читать полностью »

Предисловие

Краткий обзор алгоритма машинного обучения Метод Опорных Векторов (SVM) - 1

В данной статье мы изучим несколько аспектов SVM:

  • теоретическую составляющую SVM;
  • как алгоритм работает на выборках, которые невозможно разбить на классылинейно;
  • пример использования на Python и имплементация алгоритма в библиотеке SciKit Learn.

Читать полностью »

Хочу поделиться опытом решения задачи по машинному обучению и анализу данных от Kaggle. Данная статья позиционируется как руководство для начинающих пользователей на примере не совсем простой задачи.

Выборка данных

Выборка данных содержит порядка 8,5 млн строк и 29 столбцов.Вот некоторые из параметров:

  • Широта-latitude
  • Долгота-longitude
  • Способ взятия пробы-method_name
  • Дата и время взятия пробы-date_local

image

Задача

  1. Найти параметры максимально влияющие на уровень CO в атмосфере.
  2. Создание гипотезы, предсказывающей уровень CO в атмосфере.
  3. Создание нескольких простых визуализаций.

Читать полностью »

Хочу поделиться опытом решения задачи по машинному обучению и анализу данных от Kaggle. Данная статья позиционируется как руководство для начинающих пользователей на примере не совсем простой задачи.Читать полностью »

Углубимся ещё немного в малохоженные дебри Data Science. Сегодня в очереди на препарацию алгоритм кластеризации DBSCAN. Прошу под кат людей, которые сталкивались или собираются столкнуться с кластеризацией данных, в которых встречаются сгустки произвольной формы — сегодня ваш арсенал пополнится отличным инструментом.

Интересные алгоритмы кластеризации, часть вторая: DBSCAN - 1
Читать полностью »

Однажды мне стало интересно, отличается ли британская и американская литература с точки зрения выбора слов, и если отличается, удастся ли мне обучить классификатор, который бы различал литературные тексты с точки зрения частоты использованных слов. Различать тексты, написанные на разных языках, довольно легко, мощность пересечения множества слов небольшая относительно множества слов в выборке. Классификация текста по категориям «наука», «христианство», «компьютерная графика», «атеизм», — всем известный hello world среди задач по работе с частотностью текста. Передо мной стояла более сложная задача, так как я сравнивала два диалекта одного языка, а тексты не имели общей смысловой направленности.

image

Читать полностью »

image
Визуализация портфолио (на данном рисунке, чем краснее область, тем больше среднескачиваемых фото в этой области)

В предыдущей части речь шла о разбиении фото-портфолио по сигналам с предпоследнего слоя модели inceptionV3. В этой части я расскажу, как разбивать портфолио по ключевым словам.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js