Рубрика «системы компьютерной алгебры»

image

Этот топик продолжает серию моих статей на Хабре, посвященных исследованию аттрактора Лоренца.

Часть 1. Критический взгляд на аттрактор Лоренца
Часть 2. Динамическая система Лоренца и вычислительный эксперимент
Часть 3. О существовании периодических решений в системе Лоренца
Часть 4. Три цикла в аттракторе Лоренца

Итак, рассмотрим нелинейную систему дифференциальных уравнений, введенную Эдвардом Лоренцом в 1963 году:

$ (1)left{ begin{array}{l} dot{x}=sigma(y-x),\ dot{y}=rx-y-xz,\ dot{z}=xy-bz, end{array}right. $

где

$sigma=10,:r=28,:b=8/3:-$

классические значения параметров системы.Читать полностью »

Введение

Системы компьютерной математики (СКА) творят чудеса. Развитие математических пакетов достигло того уровня, когда невольно закрадывается мысль — а зачем нам теперь нужны классические методики преподавания математики (или физики, или механики) в школе или вузе, если большую часть «грязной» работы по преобразованию выражений можно переложить на плечи машины. А если нельзя, или трудно получить аналитическое решение задачи, то почему бы не «прощелкать» её численно в одном из популярных пакетов. Так что, давайте ограничим уровень понимания учеников составлением исходной системы уравнений, а решать учить не будем — всё легко и непринужденно сделает за них компьютер.

Не буду скрывать, что катализатором для написания данного поста послужила статья про задачу о двух старушках, любительницах пеших прогулок, взятая из книги В. И. Арнольда. В связи с этим, появилась мысль рассмотреть простую математическую задачу, решение которой показывает, что возможности СКА часто упираются в, довольно закономерный, верхний предел, и для получения компактного решения, пригодного для дальнейшего анализа, необходимо таки немного напрячь извилины.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js