Рубрика «simd» - 3

Все больше и больше область применения языка программирования javascript отходит от движения кнопочками в браузере да перекраски фона в сторону сложных и объемных веб-приложений. Уже во всю по миру шагает технология WebGL, позволяющая отображать трехмерные сцены в браузере прямо на языке js, а вместе с ней и усложняются задачи.

Производительность пользовательских машин продолжает расти, а вместе с ней и язык обзаводится новыми выразительными средствами, позволяющими ускорять вычисления. И пока WebAssembly где-то там в далеком и светлом будущем, asm.js застрял в болоте и свернул с пути, в ближайшее время изначально как часть es2015, ныне как отдельный стандарт выходит поддержка векторных операций в JS.

Все, кому интересно, что такое SIMD и векторные исчисления, как ими пользоваться в js, а так же что дает их использование — прошу под кат.

Читать полностью »

Представьте себе будущее, когда тяжелые математические пакеты будут написаны на js, при этом не будут уступать по производительности нативным. Красивые динамичные игры прямо в браузере, при этом держат стабильные 60 fps, сложная арифметика, сайты на реакте, в конце концов, перестанут тормозить. Чтобы это стало возможным, языку приходится динамично развиваться и включать в себя достаточно неожиданные вещи, как недавно нашумевший web-assembly, asm.js, typed arrays, так и одна технология, о которой пойдет речь в этой статье.

ES2017 обещает много интересного, но большинство из этого имеют пометку draft, каждый день придумывают что-то новое и отказываются от чего-то старого. Однако, похоже, одна экспериментальная спецификация все таки дорастет до стандарта и позволит делать быстрые математические расчеты на js. Встречайте — SIMD — single instruction multi data. Кому интересно что это такое, как оно себя ведет сейчас и что это технология обещает — добро пожаловать под кат!Читать полностью »

Введение

При решении задач моделирования движения объектов в трехмерном пространстве практически всегда требуется использование операций пространственных преобразований, связанных с умножением матриц преобразований и векторов. Для задачи N тел эта операция используется многократно для задания поворота и смещения тела относительно начала координат. Матрица пространственного преобразования имеет размерность 4х4, а размерность вектора, к которому применяется преобразование, соответственно 4x1. Рассмотрим оптимизацию выполнения такой операции с большим числом матриц и векторов под архитектуру Intel® Xeon Phi™.

Читать полностью »

Ускорение операций в 2.5 раза по сравнению с Pillow и в 10 по сравнению с ImageMagick

Pillow-SIMD - 1

Pillow-SIMD — это «форк-последователь» библиотеки работы с изображениями Pillow (которая сама является форком библиотеки PIL, ныне покойной). «Последователь» означает, что проект не становится самостоятельным, а будет обновляться вместе с Pillow и иметь ту же нумерацию версий, только с суффиксом. Я надеюсь более-менее оперативно выпускать версии Pillow-SIMD сразу после выхода версий Pillow.

Почему SIMD

Есть несколько способов улучшения производительности обработки изображений (да и всех остальных вещей, наверное, тоже).

  1. Можно использовать более хорошие алгоритмы, которые дают такой же результат.
  2. Можно сделать более быструю реализацию существующего алгоритма.
  3. Можно подключить больше вычислительных ресурсов для решения той же задачи: дополнительные ядра CPU, GPU.

Читать полностью »

image

В настоящее время огромное количество задач требует большой производительности систем. Бесконечно увеличивать количество транзисторов на кристалле процессора не позволяют физические ограничения. Геометрические размеры транзисторов нельзя физически уменьшать, так как при превышении возможно допустимых размеров начинают проявляться явления, которые не заметны при больших размерах активных элементов — начинают сильно сказываться квантовые размерные эффекты. Транзисторы начинают работать не как транзисторы.
А закон Мура здесь ни при чем. Это был и остается законом стоимости, а увеличение количества транзисторов на кристалле — это скорее следствие из закона. Таким образом, для того, чтобы увеличивать мощность компьютерных систем приходится искать другие способы. Это использование мультипроцессоров, мультикомпьютеров. Такой подход характеризуется большим количеством процессорных элементов, что приводит к независимому исполнение подзадач на каждом вычислительном устройстве.
Читать полностью »

Введение

Ранее во вступительной статье я поднимал список проблем, с которыми придется столкнуться разработчику, если он захочет оптимизировать оптимизацию обработки изображения при помощи SIMD инструкций. Теперь пришло время на конкретном примере показать, как указанные выше проблемы можно решить. Я долго думал, какой алгоритм выбрать для первого примера, и решил остановиться на медианной фильтрации. Медианная фильтрация является эффективным способом подавления шумов, которые неизбежно появляются на цифровых камерах в условиях малого освещения сцены. Алгоритм этот достаточно ресурсоемок – так например, при обработке серого изображения медианным фильтром 3х3 требуется порядка 50 операций на одну точку изображения. Но в тоже время он оперирует только с 8-битными числами и ему для работы требуется сравнительно не много входных данных. Эти обстоятельства делают алгоритм достаточно простым для SIMD оптимизации и в тоже время позволяют получить из нее весьма существенное ускорение.

image
Читать полностью »

SIMD и обработка изображений

Обработка изображений (здесь мы сознательно ограничиваем в себя только растровыми картинками и опускаем широкий класс векторных изображений), как правило, представляет собой набор простых операций, которые применяются к каждой точке изображения. Если учесть, что цветовые каналы, из которых состоит точка изображения (пиксель) обычно представлены в виде целых чисел небольшой размерности, то обработка изображения сводится к огромному числу однотипных операций над 1-2 байтными целыми числами.
image
Читать полностью »

Пакеты numpy и scipy предоставляют прекрасные возможности для быстрого решения различных вычислительных задач. Концепция универсальных функций (ufunc), работающих как со скалярными значениями, так и с массивами различных размерностей, позволяет получить высокую производительность при сохранении присущей языку Python простоты и элегантности. Универсальная функция обычно используются для выполнения одной операции над большим массивом данных, что идеально подходит для оптимизации с помощью SIMD-инструкций, однако мне не удалось найти готового решения, основанного на свободном программном обеспечении и позволяющего использовать SIMD для вычисления в numpy таких математических функций, как синус, косинус и экспонента. Реализовывать алгоритмы вычисления этих функций с нуля совсем не хотелось, но к счастью в интернете нашлось несколько свободных библиотек на языке «С». Преодолев лень сомнения, я решил написать собственный numpy-модуль, предлагающий универсальные функции для синуса, косинуса и экспоненты. За подробностями и результатами тестов добро пожаловать под кат.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js