С 7 по 9 ноября в Институте космических и информационных технологий Сибирского федерального университета прошла I Зимняя школа «Цифровые встраиваемые системы». Участниками школы были студенты и аспиранты СФУ.
Читать полностью »
С 7 по 9 ноября в Институте космических и информационных технологий Сибирского федерального университета прошла I Зимняя школа «Цифровые встраиваемые системы». Участниками школы были студенты и аспиранты СФУ.
Читать полностью »
Приветствую читатель! Сегодня я расскажу вам курьезную историю, которая заставила меня задуматься о проблемах, возникающих при неправильном (неоптимальном) выборе комплектующих для реализации какого-либо электронного изделия. А также о кажущейся простоте на примере устройства «одного дня».
В двух своих последних статьях я рассказал о силовом модуле и плате управления на базе микроконтроллера STM32F334R8T6, которые созданы специально для реализации систем управления силовыми преобразователями и электроприводом. Так же был рассмотрен пример DC/AC преобразователя, который являлся демонстрацией, а не завершенной конструкцией. Теперь пришло время сделать что-то простое, но полезное, а главное завершенное.
Большинство вопросов, касающихся проекта и силовой электроники, связаны с конкретными топологиями: кому-то интересно узнать алгоритм управления PFC, кому-то хочется научиться строить LLC полумост, но наиболее популярная топология — это несомненно buck. Ведь buck-преобразователь (он же buck converter) является основной для большинства интересных проектов: это и драйвер для LED светильников, и основа MPPT контроллера для солнечных панелей, и зарядные устройства и вообще много чего еще.
В сети достаточно много информации по buck, в том числе и даташиты, но она разрозненна и мне лично не встречался материал, где подробно описан процесс создания buck-преобразователя с цифровым управлением. Пора это исправить. Математики практически нет, объяснения «на пальцах», поэтому будет интересно всем, кто хоть как-то связан с электроникой.
Во время изучения в университете такого занимательного предмета, как схемотехника, мне пришло в голову сделать в рамках курсового проекта "Двух осевой плоттер на бумаге с головкой из авторучки на базе Arduino". К моменту начала работы я себе весьма смутно представляла разработку электрической части проекта, впрочем, как и механической. Подобного опыта в моей жизни еще не бывало. Именно поэтому я нашла в сети, перебрав множество ресурсов, показавшийся мне наиболее простым и понятным туториал, и решила точно следовать ему. Однако, скоро выяснилось, что все простое на первый взгляд расписано не достаточно подробно для такого "умельца" как я. Поэтому в оставшихся "за кадром" вопросах пришлось импровизировать, не всегда удачно, как оказывалось в последствии. Это была небольшая предыстория. Теперь хотелось бы поделиться своим ценным опытом по ряду ключевых вопросов. Приводить полностью новую инструкцию с моей версией этого устройства не буду, т.к. на просторах интернета итак достаточно более удачных решений.
Не для кого не секрет, что сложные современные преобразователи, например, online UPS, работают под управлением DSP/МК или ASIC. Основными поставщиками DSP для силовой электроники являются две компании — Texas Instruments и Infineon, но сегодня речь пойдет о продукции компании STMicroelectronics — серии STM32F334. Данная линейка МК предназначена для управления электроприводом и построения силовых преобразователей: PFC, инверторов, импульсных блоков питания, UPS и прочих.
Конечно, серия F334 не может противостоять «мощи» таких популярных решений как TMS320F28335 и прочим, но у нее есть одно важное преимущество — стоимость. Старший камень STM32F334R8T6 стоит 5$, имеет на борту необходимый набор периферии (HRPWM, ADC, компараторы) и производительность для построения достаточно мощных преобразователей (десятки кВт) с хорошей надежностью и устойчивостью к отказу.
Для разработчика электроники важна экосистема вокруг того DSP/МК с которым он работает: документация, отладочные средства, примеры кода и железа. У TI все это имеется, да — дорого, да — сложно купить, но есть и именно поэтому в большинстве современных решений в области электропривода и энергетики стоят TMS320. Компания ST же почему-то обошла вниманием серию F334, хотя документация хорошего качество как и на любой STM32 имеется, а вот примеры железа с полноценным кодом и отладочные платы отсутствуют (игрушка F3348-Disco не считается). Что же — будем исправлять этот недостаток.
В своей прошлой статье я рассказал о своем проекте «комплекта разработчика» и даже продемонстрировал один из компонентов — силовой модуль. Сегодня я расскажу о 2-м (всего их будет 3) модуле, который позволяет реализовать любую топологию преобразователя и при этом стоит в разы дешевле конкурентов. Проект разумеется открыт и все исходники можно посмотреть в конце данной статьи.
Эта статья посвящена увлекательному приключенческому квесту, который мне пришлось пройти в процессе создания обновленного внешнего датчика для метеостанции, описанной вот в этой статье полтора года назад. По опыту эксплуатации предыдущей версии очень хотелось создать датчик с контрольным дисплеем, чтобы можно было без проблем периодически проверять (и поверять) наиболее капризный компонент станции — датчик скорости ветра. Приключения начались тогда, когда я стал подбирать для этой цели дисплей и по ряду причин, о которых далее, остановился на продукции родного МЭЛТ. Но прежде чем я перейду к описанию приемов нетрадиционного секса способов справиться с выбранными мной произведениями этой фирмы, стоит кратко остановиться на главной причине всей этой грандиозной модернизации, которую я затеял.
Читать полностью »
Что такое силовая электроника? Без сомнения — это целый мир! Современный и полный комфорта. Многие представляют себе силовую электронику как что-то «магическое» и далекое, но посмотрите вокруг — почти все, что нас окружает содержит в себе силовой преобразователь: блок питания для ноутбука, светодиодная лампа, UPS, различные регуляторы, стабилизаторы напряжения, частотники (ПЧ) в вентиляции или лифте и многое другое. Большинство из этого оборудования делает нашу жизнь комфортной и безопасной.
Разработка силовой электроники по ряду причин является одной из сложнейших областей электроники — цена ошибки тут очень высока, при этом разработка силовых преобразователей всегда привлекала любителей, DIYщиков и не только. Наверняка вам хотелось собрать мощный блок питания для какого-то своего проекта? Или может быть online UPS на пару кВт и не разориться? А может частотник в мастерскую?
Сегодня я расскажу о своем небольшом открытом проекте, а точнее о его части, который позволит шагнуть в мир разработки силовой электроники любому желающему и при этом остаться в живых. В качестве демонстрации возможностей я покажу как за 15 минут собрать инвертор напряжения из 12В DC в 230В AC с синусом на выходе. Заинтриговал? Поехали!
DFM — это принципы разработки и ведения проекта, которые нацелены на успешное производство готового изделия. Следование этим принципам призвано снизить срок постановки на производство и сроки тестирования готовой продукции, с одновременным повышением качества. DFM начинается задолго до проектирования, на этапе обсуждения технического задания, зависит от величины серии и влияет на стоимость проектирования, изготовления и тестирования. О DFM писали на Хабре, например здесь. Сегодня мы поговорим про функциональное тестирование печатной платы и опишем её подготовку для этой цели. (трафик)
Читать полностью »
Приветствую! Думаю, любой инженер или просто радиолюбитель/DIYщик/мейкер, занимающийся разработкой электроники, старается развивать свои навыки, которые растут вместе со сложностью выполняемых проектов. В какой-то момент человек достигает уровня, когда ему кажется, что проекты стали очень сложными, займут много времени на разработку и надо что-то с этим делать — нужно оптимизировать свою работу. Сегодня я расскажу как в Altium Designer 18 (далее AD или AD18) повысить производительность своего интеллектуального труда и сэкономить время, нервы и деньги.
Наконец-то у меня дошли руки до изучения ПЛИС. А то как-то неправильно получается: драйвера на железо под Linux пишу, микроконтроллеры программирую, схемы читаю (и немного проектирую), надо расти дальше.
Так как мигать светодиодами мне показалось не интересно, то решил сделать простенькую вещь. А именно написать модули приемника и передатчика для UART, объединить их внутри FPGA (заодно понять как использовать IP Core), ну и протестировать это все на реальном железе.
Читать полностью »