Рубрика «sgd»

Вариационные автокодировщики: теория и рабочий код - 1

Вариационный автокодировщик (автоэнкодер) — это генеративная модель, которая учится отображать объекты в заданное скрытое пространство.

Когда-нибудь задавались вопросом, как работает модель вариационного автокодировщика (VAE)? Хотите знать, как VAE генерирует новые примеры, подобные набору данных, на котором он обучался? Прочитав эту статью, вы получите теоретическое представление о внутренней работе VAE, а также сможете реализовать его самостоятельно. Затем я покажу рабочий код VAE, обученный на наборе рукописных цифр, и мы немного повеселимся, генерируя новые цифры!
Читать полностью »

Отжиг и вымораживание: две свежие идеи, как ускорить обучение глубоких сетей - 1

В этом посте изложены две недавно опубликованные идеи, как ускорить процесс обучения глубоких нейронных сетей при увеличении точности предсказания. Предложенные (разными авторами) способы ортогональны друг другу, и могут использоваться совместно и по отдельности. Предложенные здесь способы просты для понимания и реализации. Собственно, ссылки на оригиналы публикаций:

Читать полностью »

Всем привет!

Открытый курс машинного обучения. Тема 8. Обучение на гигабайтах с Vowpal Wabbit - 1

Вот мы постепенно и дошли до продвинутых методов машинного обучения, сегодня обсудим, как вообще подступиться к обучению модели, если данных гигабайты и десятки гигабайт. Обсудим приемы, позволяющие это делать: стохастический градиентный спуск (SGD) и хэширование признаков, посмотрим на примеры применения библиотеки Vowpal Wabbit. Домашнее задание будет как на реализацию SGD-алгоритмов, так и на обучение классификатора вопросов на StackOverflow по выборке в 10 Гб.

Поехали!

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js