Рубрика «segmentation»

image
Больно только в первый раз!

Всем привет! Дорогие друзья, в этой статье я хочу поделиться своим опытом использования TensorRT, RetinaNet на базе репозитория github.com/aidonchuk/retinanet-examples (это форк официальной репы от nvidia, который позволит начать использовать в продакшен оптимизированные модели в кратчайшие сроки). Пролистывая сообщения в каналах сообщества ods.ai, я сталкиваюсь с вопросами по использованию TensorRT, и в основном вопросы повторяются, поэтому я решил написать как можно более полное руководство по использованию быстрого инференса на основе TensorRT, RetinaNet, Unet и docker.
Читать полностью »

Перевод подготовлен для студентов курса «Прикладная аналитика на R».

Иерархическая кластеризация категориальных данных в R - 1


Это была моя первая попытка выполнить кластеризацию клиентов на основе реальных данных, и она дала мне ценный опыт. В Интернете есть множество статей о кластеризации с использованием численных переменных, однако найти решения для категориальных данных, работа с которыми несколько сложнее, оказалось не так просто. Методы кластеризации категориальных данных еще только разрабатываются, и в другом посте я собираюсь попробовать еще один.
Читать полностью »

Как мы заменили спортивного скаута нейронной сетью - 1
Да, действительно, мы смогли заменить нейронной сетью спортивного скаута и стали автоматически собирать данные об игре. И теперь знаем о спортивном состязании больше присутствующего на нем зрителя, а иногда и судьи.
Читать полностью »

Оптическое распознавание символов (OCR) — это процесс получения печатных текстов в оцифрованном формате. Если вы прочитали классический роман на цифровом устройстве или попросили врача поднять старые медицинские записи через компьютерную систему больницы, вы, вероятно, воспользовались OCR.

OCR делает ранее статический контент доступным для редактирования, доступным для поиска и для обмена. Но многие документы, стремящиеся к оцифровке, содержат кофейные пятна, выцветшие солнечные пятна, страницы с загнутыми уголками и множество морщин сохраняют некоторые печатные документы в не оцифрованном виде.

Всем давно известно, что существуют миллионы старых книг, которые хранятся в хранилищах. Использование этих книг запрещено по причине их ветшалости и дряхлости, и поэтому оцифровка этих книг столь важна.

В работе рассматривается задача очистки текста от зашумленности, распознавание текста на изображении и конвертации его в текстовый формат.

image

Для обучения использовалось 144 картинки. Размер может быть разным, но желательно должен быть в пределах разумного. Картинки должны иметь формат PNG. После считывании изображения используется бинаризация – процесс преобразования цветного изображения в черно-белое, то есть каждый пиксель нормализуется в диапазон от 0 до 255, где 0 – это черный, 255 – белый.

Чтобы обучить сверточную сеть, нужно больше изображений, чем имеется. Было принято решение разделить изображения на части. Так как обучающая выборка состоит из картинок разного размера, каждое изображение было сжато до 448х448 пикселей. В результате получилось 144 изображения в разрешении 448х448 пикселей. После чего все они были нарезаны на неперекрывающиеся окна размером 112x112 пикселей.

Читать полностью »

Создаем свой датасет с пришельцами - 1

Сегментацией людей с помощью нейронных сетей уже никого не удивишь. Есть много приложений, таких как Sticky Ai, Teleport Live, Instagram, которые позволяют выполнять такую сложную задачу на мобильном телефоне в реалтайме.

Итак, предположим планета Земля столкнулась с внеземными цивилизациями. И от пришельцев из звездной системы Альфа Центавра поступает запрос на разработку нового продукта. Им очень понравилось приложение Sticky Ai, которое позволяет вырезать людей и делать стикеры, поэтому они хотят портировать приложение на свой межгалактический рынок.

Читать полностью »

В этой статье я бы хотел рассказать про некоторые приемы работы с данными при обучении модели. В частности, как натянуть сегментацию объектов на ббоксы, а также как обучить модель и получить разметку датасета, разметив всего несколько сэмплов.
Пицца аля-semi-supervised - 1
Читать полностью »

Сегментация томографических данных - 1

Зачем это нужно

Для чего выполняется томографическое исследование? В большинстве случаев ради медицинской диагностики, иногда — в научных целях. Цель медицинской диагностики — выявить патологию, либо получить о ней дополнительную информацию, либо же убедиться, что её нет. Каким образом это достигается? В большинстве случаев путем последовательного ручного анализа срезов, сгенерированных томографом. Зачастую этого вполне достаточно. Но в некоторых случаях получить достаточно информации только на основе анализа плоских срезов невозможно или картина получается неполной: например, при поиске патологий сосудов или анализе некоторых переломов. Также, иногда необходима информация о взаимном расположении различных органов: особенно это актуально при планировании предстоящих операций. Получить такую информацию только на основе плоских срезов, в большинстве случаев, затруднительно. Тогда приходит на помощь трехмерная реконструкция томографических данных.
Читать полностью »

image

Всем привет!

В данной статье хочу поделиться с вами историей о том, как одна и та же архитектура модели принесла сразу две победы в соревновательном машинном обучении на платформе topcoder с интервалом месяц.

Речь пойдёт о следующих соревнованиях:

  • Urban 3d mapper — поиск домиков на спутниковых снимках. Соревнование длилось 2 месяца, было 54 участников и пять призовых мест.
  • Spacenet: road detection challenge — поиск графа дорог. На решение также давалось 2 месяца, включало 33 участника и пять призовых позиций.

В статье рассказывается об общих подходах к решению таких задач и особенностях реализации для конкретных конкурсов.

Для комфортного чтения статьи желательно обладать базовыми знаниями о свёрточных нейронных сетях и их обучении.

Читать полностью »

В статье анализируются типовые трудности, стоящие сегодня перед корпоративной службой IT, и предлагается современный подход к их решению на базе сетевой фабрики Cisco Software-Defined Access (SD-Access).

Рассматриваются ключевые компоненты и технологии, лежащие в основе Cisco SD-Access, а также принципы их работы.

На примере конкретных типовых сценариев подробно анализируются преимущества, предлагаемые IT и бизнесу фабрикой SD-Access.
Читать полностью »

Сегментация лица на селфи без нейросетей - 1 Приветствую вас, коллеги. Оказывается, не все компьютерное зрение сегодня делается с использованием нейронных сетей. Хотя многие стартапы и заявляют, что у них дип лернинг везде, спешу вас разочаровать, они просто хотят хайпануть немножечко. Рассмотрим, например, задачу сегментации. В нашем слаке развернулась целая драма. Одна богатая и высокотехнологичная селфи-компания собрала датасет для сегментации селфи с помощью нейросетей (а это непростое и недешевое занятие). А другая, более бедная и не очень развитая решила, что можно подкупить людей, размечающих фотки, и спполучить базу. В общем, страсти в этих ваших Интернетах еще те. Недавно я наткнулся на статью, где без всяких нейросетей на устройстве делают очень даже хорошую сегментацию. Для сегментации от пользователя требуется дать алгоритму несколько подсказок, но с помощью dlib и opencv такие подсказки легко автоматизируются. В качестве бонуса мы так же сгладим вырезанное лицо и перенесем на какого-нибудь рандомного человека, тем самым поймем, как работают маски во всех этих снапчятах и маскарадах. В общем, классика еще жива, и если вы хотите немного окунуться в классическое компьютерное зрение на питоне, то добро пожаловать под кат.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js