Рубрика «ряд фурье»

Введение

Рассмотрим дискретное вейвлет – преобразования (DWT), реализованное в библиотеке PyWavelets PyWavelets 1.0.3. PyWavelets — это бесплатное программное обеспечение с открытым исходным кодом, выпущенное по лицензии MIT.

При обработке данных на компьютере может выполняться дискретизированная версия непрерывного вейвлет-преобразования, основы которого описаны в моей предыдущей статье. Однако, задание дискретных значений параметров (a,b) вейвлетов с произвольным шагом Δa и Δb требует большого числа вычислений.

Кроме того, в результате получается избыточное количество коэффициентов, намного превосходящее число отсчетов исходного сигнала, которое не требуется для его реконструкции.

Дискретное вейвлет – преобразование (DWT), реализованное в библиотеке PyWavelets, обеспечивает достаточно информации как для анализа сигнала, так и для его синтеза, являясь вместе с тем экономным по числу операций и по требуемой памяти.

Когда нужно использовать вейвлет-преобразование вместо преобразования Фурье

Преобразования Фурье будет работать очень хорошо, когда частотный спектр стационарный. При этом частоты, присутствующие в сигнале, не зависят от времени, и сигнал содержит частоты xHz, которые присутствует в любом месте сигнала. Чем нестационарнее сигнал, тем хуже будут результаты. Это проблема, так как большинство сигналов, которые мы видим в реальной жизни, нестационарны по своей природе.
Читать полностью »

Введение

Английское слово wavelet (от французского «ondelette») дословно переводится как «короткая (маленькая) волна». В различных переводах зарубежных статей на русский язык встречаются еще термины: «всплеск», «всплесковая функция», «маловолновая функция», «волночка» и др.

Вейвлет-преобразование (ВП) широко используется для анализа сигналов. Помимо этого, оно находит большое применение в области сжатия данных. ВП одномерного сигнала – это его представление ввиде обобщенного ряда или интеграла Фурье по системе базисных функций.

$psi _{ab}(t)=frac{1}{sqrt{a}}psi left ( frac{t-b}{a} right ) $, (1)

сконструированных из материнского (исходного) вейвлета $psi(t)$, обладающего определенными свойствами за счет операций сдвига во времени ( b ) и изменения временного масштаба (a).

Множитель $1/sqrt{a}$ обеспечивает независимость нормы функций (1) от масштабирующего числа (a). Для заданных значений параметров a и b функция $psi_{ab}(t)$ и есть вейвлет, порождаемый материнским вейвлетом $psi(t)$.

В качестве примера приведём вейвлет «мексиканская шляпа» во временной и частотной областях:

Листинг вейвлета для временной области

from numpy import*
import matplotlib.pyplot as plt
x= arange(-4,30,0.01)
def w(a,b,t):    
    f =(1/a**0.5)*exp(-0.5*((t-b)/a)**2)* (((t-b)/a)**2-1)
    return f
plt.title("Вейвлет «Мексиканская шляпа»:n$1/sqrt{a}*exp(-0,5*t^{2}/a^{2})*(t^{2}-1)$")
y=[w(1,0,t) for t in x]
plt.plot(x,y,label="$psi(t)$ a=1,b=12") 
y=[w(2,12,t) for t in x]
plt.plot(x,y,label="$psi_{ab}(t)$ a=2 b=12")   
y=[w(4,12,t) for t in x]
plt.plot(x,y,label="$psi_{ab}(t)$ a=4 b=12")   
plt.legend(loc='best')
plt.grid(True)
plt.show()

Вейвлет – анализ. Основы - 6
Читать полностью »

Есть много задач, для решения которых нейронные сети прямого распространения с сигмоидальной активационной функцией не являются оптимальными. Например — задачи распознавание бинарных изображений, с первичной обработкой с помощью преобразования Фурье. В ходе этих преобразований изображение становится инвариантным к смещениям, масштабированию и поворотам. Пример таких преобразований приведен ниже.[1] На выходе такой метод выдает вектор комплексных чисел. Современные нейронные сети не могут с ними работать т.к. они работают только с вещественными числами.
image
Читать полностью »

Нужно ли вам читать этот текст?

Давайте проверим. Прочтите следующее:

Тригонометрическим рядом Фурье функции Математика на пальцах: давайте посчитаем хотя бы один ряд Фурье в уме - 1 называют функциональный ряд вида

Математика на пальцах: давайте посчитаем хотя бы один ряд Фурье в уме - 2

где
Математика на пальцах: давайте посчитаем хотя бы один ряд Фурье в уме - 3

Математика на пальцах: давайте посчитаем хотя бы один ряд Фурье в уме - 4

Математика на пальцах: давайте посчитаем хотя бы один ряд Фурье в уме - 5

Страшно, но всё же хочется понять, что это значит?

Значит, вам под кат. Постараюсь формул не использовать.
Читать полностью »

Построение аналитических выражений… для любых объектов — от теоремы Пифагора до розовой пантеры и сэра Исаака Ньютона в Wolfram Language (Mathematica) - 1

Перевод поста Майкла Тротта (Michael Trott) "Making Formulas… for Everything—From Pi to the Pink Panther to Sir Isaac Newton".
Выражаю благодарность за помощь в переводе Сильвии Торосян.
Скачать перевод в виде документа Mathematica, который содержит весь код использованный в статье, можно здесь (архив, ~7 МБ).

В компании Wolfram Research и Wolfram|Alpha мы любим математику и вычисления. Наши любимые темы — алгоритмы, следующие из формул и уравнений. Например, Mathematica может вычислить миллионы интегралов (точнее бесконечное их количество, встречающихся на практике), а также Wolfram|Alpha знает сотни тысяч математических формул (от формулы Эйлера и BBP-формул для Pi до сложных определённых интегралов, содержащих sin (x)) и множество формул физики (например, от закона Пуазейля до классических решений механики для точечной частицы в прямоугольнике или потенциала обратного расстояния в четырехмерном пространстве, в гиперсферических координатах), так же как менее известные формулы, такие как формулы для частоты дрожащей мокрой собаки, максимальной высоты песочного замка, или времени приготовления индейки.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js