Рубрика «RNN» - 2

Суть

Оказывается для этого достаточно запуcтить всего лишь такой набор команд:

git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor
wget http://dumps.wikimedia.org/ruwiki/latest/ruwiki-latest-pages-articles.xml.bz2
python3 WikiExtractor.py -o ../data/wiki/ --no-templates --processes 8 ../data/ruwiki-latest-pages-articles.xml.bz2

и потом немного отполировать скриптом для пост-процессинга

python3 process_wikipedia.py

Результат — готовый .csv файл с вашим корпусом.

Читать полностью »

На Хабре периодически появляются обзоры курсов по машинному обучению. Но такие статьи чаще добавляют в закладки, чем проходят сами курсы. Причины для этого разные: курсы на английском языке, требуют уверенного знания матана или специфичных фреймворков (либо наоборот не описаны начальные знания, необходимые для прохождения курса), находятся на других сайтах и требуют регистрации, имеют расписание, домашнюю работу и тяжело сочетаются с трудовыми буднями. Всё это мешает уже сейчас с нуля начать погружаться в мир машинного обучения со своей собственной скоростью, ровно до того уровня, который интересен и пропускать при этом неинтересные разделы.

В этом обзоре в основном присутствуют только ссылки на статьи на хабре, а ссылки на другие ресурсы в качестве дополнения (информация на них на русском языке и не нужно регистрироваться). Все рекомендованные мною статьи и материалы я прочитал лично. Я попробовал каждый видеокурс, чтобы выбрать что понравится мне и помочь с выбором остальным. Большинство статей мною были прочитаны ранее, но есть и те на которые я наткнулся во время написания этого обзора.

Обзор состоит из нескольких разделов, чтобы каждый мог выбрать уровень с которого можно начать.
Для крупных разделов и видео-курсов указаны приблизительные временные затраты, необходимые знания, ожидаемые результаты и задания для самопроверки.

Нейронные сети с нуля. Обзор курсов и статей на русском языке, бесплатно и без регистрации - 1
Читать полностью »

image

Проблема предсказания оттока клиентов — одна из самых распространенных в практике Data Science (так теперь называется применение статистики и машинного обучения к бизнес-задачам, уже все знают?). Проблема достаточно универсальна: она актуальна для многих отраслей — телеком, банки, игры, стриминг-сервисы, ритейл и пр. Необходимость ее решения довольно легко обосновать с экономической точки зрения: есть куча статей в бизнес-журналах о том, что привлечь нового клиента в N раз дороже, чем удержать старого. И ее базовая постановка проста для понимания так, что на ее примере часто объясняют основы машинного обучения.

Для нас в Plarium-South, как и для любой игровой компании, эта проблема также актуальна. Мы прошли длинный путь через разные постановки и модели и пришли к достаточно оригинальному, на наш взгляд, решению. Все ли так просто, как кажется, как правильно определить отток и зачем тут нейросеть, расскажем под катом.Читать полностью »

Необходимое предисловие: я решил попробовать современный формат несения света в массы и пробую стримить на YouTube про deep learning.

В частности, в какой-то момент меня попросили рассказать про attention, а для этого нужно рассказать и про машинный перевод, и про
sequence to sequence, и про применение к картинкам, итд итп. В итоге получился вот такой стрим на час:

Я так понял по другим постам, что c видео принято постить его транскрипт. Давайте я лучше вместо этого расскажу про то, чего в видео нет — про новую архитектуру нейросетей для работы с последовательностями, основанную на attention. А если нужен будет дополнительный бэкграунд про машинный перевод, текущие подходы, откуда вообще взялся attention, итд итп, вы посмотрите видео, хорошо?

Новая архитектура называется Transformer, была разработана в Гугле, описана в статье Attention Is All You Need (arxiv) и про нее есть пост на Google Research Blog (не очень детальный, зато с картинками).

Поехали.

Читать полностью »

LSTM – сети долгой краткосрочной памяти - 1

Рекуррентные нейронные сети

Люди не начинают думать с чистого листа каждую секунду. Читая этот пост, вы понимаете каждое слово, основываясь на понимании предыдущего слова. Мы не выбрасываем из головы все и не начинаем думать с нуля. Наши мысли обладают постоянством.

Традиционные нейронные сети не обладают этим свойством, и в этом их главный недостаток. Представим, например, что мы хотим классифицировать события, происходящие в фильме. Непонятно, как традиционная нейронная сеть могла бы использовать рассуждения о предыдущих событиях фильма, чтобы получить информацию о последующих.

Решить эту проблемы помогают рекуррентые нейронные сети (Recurrent Neural Networks, RNN). Это сети, содержащие обратные связи и позволяющие сохранять информацию.
Читать полностью »

Обзор исследований в области глубокого обучения: обработка естественных языков - 1

Это третья статья из серии “Обзор исследований в области глубокого обучения” (Deep Learning Research Review) студента Калифорнийского университета в Лос-Анджелесе Адита Дешпанда (Adit Deshpande). Каждые две недели Адит публикует обзор и толкование исследований в определенной области глубинного обучения. В этот раз он сосредоточил свое внимание на применении глубокого обучения для обработки текстов на естественном языке.
Читать полностью »

Попробуем решить задачу поиска аномалий в звуке.

Примеры аномалий звука:

  • Неисправности в работе двигателя.
  • Изменения в погоде: дождь, град, ветер.
  • Аномалии работа сердца, желудка, суставов.
  • Необычный трафик на дороге.
  • Неисправности колесных пар у поезда.
  • Неисправности при посадке и взлете самолета.
  • Аномалии движения жидкости в трубе, в канале.
  • Аномалии движения воздуха в системах кондиционирования, на крыле самолета.
  • Неисправности автомобиля, велосипеда.
  • Неисправности станка, оборудования.
  • Расстроенный музыкальный инструмент.
  • Неправильно взятые ноты песни.
  • Эхолокация кораблей и подводных лодок.
    Читать полностью »

Самодельный бот пишет эротические рассказы - 1Эротическая литература шаблонна: одни и те же возбуждающие слова, эпитеты и, разумеется, одни и те же действия. Это же идеальные условия творчества для бота!

Журналистка Даниэла Эрнандес (Daniela Hernandez, на фото) решила проверить эту теорию.

Знакомый программист сказал ей, что для обучения нейросети нужно хотя бы 750 000 слов, так что поиск текстов занял некоторое время. Она скачала произведения из нескольких специализированных электронных библиотек, где эротика публикуется под лицензией Creative Commons, а также обратилась к авторам с просьбой поделиться своими романами для эксперимента.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js