Рубрика «RNN»

С прошлой статьи я внёс несколько изменений:
1. Планировщик был сломан и не изменял скорость. Починил.
2. Остаточное соединение через умножение.
3. WindowedDense для выходной проекции.
4. Добавил clipnorm 1, cutoff_rate 0.4

Как обычно это всё добавляет стабильности и 1% точности.

WindowedDense по неизвестной мне причине добавляет SMR стабильность.

class SMR(layers.Layer):
  def __init__(self, units):
    super().__init__()
    self.state_size = units
    self.s_l = layers.Dense(units, use_bias=False)

  def get_in_proj(self):
    return WindowedDense(self.state_size, 16)

  def call(self, i, states):
    s = states[0]
    s = self.s_l(s)
    o = i * (s + 0.1)
    return o, [o]

Читать полностью »

Кто знает, что значит GPT в названии ChatGPT, могут дальше не читать - 1

В настоящее время искусственный интеллект (ИИ) стремительно развивается. Мы являемся свидетелями интеллектуальной мощи таких нейросетей, как GPT-4 Turbo от OpenAI и Gemini Ultra от GoogleЧитать полностью »

Привет!

Два последних года я в рамках магистерской диссертации разбирался с тем, как лучше использовать рекуррентные нейронные сети для прогнозирования временных рядов, и теперь хочу поделиться моим опытом с сообществом.

Я разделил свой рассказ на несколько блоков:

  • Что такое RNN

  • Рекуррентные нейроны

  • Методы обработки временных рядов

  • Стратегии прогнозирования

  • Добавление факторов в RNN

  • Глобальные модели RNN

Читать полностью »

Как сделать из нейросети журналиста, или «Секреты сокращения текста на Хабре без лишних слов» - 1Только не удивляйтесь, но второй заголовок к этому посту сгенерировала нейросеть, а точнее алгоритм саммаризации. А что такое саммаризация?

Это одна из ключевых и классических задач Natural Language Processing (NLP). Она заключается в создании алгоритма, который принимает на вход текст и на выходе выдаёт его сокращённую версию. Причем в ней сохраняется корректная структура (соответствующая нормам языка) и правильно передается основная мысль текста.

Такие алгоритмы широко используются в индустрии. Например, они полезны для поисковых движков: с помощью сокращения текста можно легко понять, коррелирует ли основная мысль сайта или документа с поисковым запросом. Их применяют для поиска релевантной информации в большом потоке медиаданных и для отсеивания информационного мусора. Сокращение текста помогает в финансовых исследованиях, при анализе юридических договоров, аннотировании научных работ и многом другом. Кстати, алгоритм саммаризации сгенерировал и все подзаголовки для этого поста.

К моему удивлению, на Хабре оказалось совсем немного статей о саммаризации, поэтому я решил поделиться своими исследованиями и результатами в этом направлении. В этом году я участвовал в соревновательной дорожке на конференции «Диалог» и ставил эксперименты над генераторами заголовков для новостных заметок и для стихов с помощью нейронных сетей. В этом посте я вначале вкратце пробегусь по теоретической части саммаризации, а затем приведу примеры с генерацией заголовков, расскажу, какие трудности возникают у моделей при сокращении текста и как можно эти модели улучшить, чтобы добиться выдачи более качественных заголовков.
Читать полностью »

image

Промышленная разработка программных систем требует большого внимания к отказоустойчивости конечного продукта, а также быстрого реагирования на отказы и сбои, если они все-таки случаются. Мониторинг, конечно же, помогает реагировать на отказы и сбои эффективнее и быстрее, но недостаточно. Во-первых, очень сложно уследить за большим количеством серверов – необходимо большое количество людей. Во-вторых, нужно хорошо понимать, как устроено приложение, чтобы прогнозировать его состояние. Следовательно, нужно много людей, хорошо понимающих разрабатываемые нами системы, их показатели и особенности. Предположим, даже если найти достаточное количество людей, желающих заниматься этим, требуется ещё немало времени, чтобы их обучить.

Что же делать? Здесь нам на помощь спешит искусственный интеллект. Речь в статье пойдет о предиктивном обслуживании (predictive maintenance). Этот подход активно набирает популярность. Написано большое количество статей, в том числе и на Хабре. Крупные компании вовсю используют такой подход для поддержки работоспособности своих серверов. Изучив большое количество статьей, мы решили попробовать применить этот подход. Что из этого вышло?

Читать полностью »

Первую часть статьи об основах NLP можно прочитать здесь. А сегодня мы поговорим об одной из самых популярных задач NLP – извлечении именованных сущностей (Named-entity recognition, NER) – и разберем подробно архитектуры решений этой задачи.

image
Читать полностью »

Кодирование речи на 1600 бит-с нейронным вокодером LPCNet - 1

Это продолжение первой статьи о LPCNet. В первом демо мы представили архитектуру, которая сочетает обработку сигналов и глубокое обучение для повышения эффективности нейронного синтеза речи. На этот раз превратим LPCNet в нейронный речевой кодек с очень низким битрейтом (см. научную статью). Его можно использовать на текущем оборудовании и даже на телефонах.

Впервые нейронный вокодер работает в реальном времени на одном процессорном ядре телефона, а не на высокоскоростном GPU. Итоговый битрейт 1600 бит/с примерно в десять раз меньше, чем выдают обычные широкополосные кодеки. Качество намного лучше, чем у существующих вокодеров с очень низким битрейтом и сопоставимо с более традиционными кодеками, использующими более высокий битрейт.
Читать полностью »

Nomeroff Net numberplate detection OCR example

Продолжаем рассказ о том как распознавать номерные знаки для тех кто умеет писать приложение «hello world» на python-е! В этой части научимся тренировать модели, которые ищут регион заданного объекта, а также узнаем как написать простенькую RNN-сеть, которая будет справляться с чтением номера лучше чем некоторые коммерческие аналоги.
В этой части я расскажу как тренировать Nomeroff Net под Ваши данные, как получить высокое качество распознавания, как настроить поддержку GPU и ускорить все на порядок…
Читать полностью »

Насколько сложна тема машинного обучения? Если Вы неплохо математически подкованы, но объем знаний о машинном обучении стремится к нулю, как далеко Вы сможете зайти в серьезном конкурсе на платформе Kaggle?

Kaggle: не можем ходить — будем бегать - 1
Читать полностью »

Привет! Меня зовут Иван Смуров, и я возглавляю группу исследований в области NLP в компании ABBYY. О том, чем занимается наша группа, можно почитать здесь. Недавно я читал лекцию про Natural Language Processing (NLP) в Школе глубокого обучения – это кружок при Физтех-школе прикладной математики и информатики МФТИ для старшеклассников, интересующихся программированием и математикой. Возможно, тезисы моей лекции кому-то пригодятся, поэтому поделюсь ими с Хабром.

Поскольку за один раз все объять не получится, разделим статью на две части. Сегодня я расскажу о том, как нейросети (или глубокое обучение) используются в NLP. Во второй части статьи мы сконцентрируемся на одной из самых распространенных задач NLP — задаче извлечения именованных сущностей (Named-entity recognition, NER) и разберем подробно архитектуры ее решений.

NLP. Основы. Техники. Саморазвитие. Часть 1 - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js