Рубрика «рекуррентная нейронная сеть»

Продолжение цикла публикаций статей про прогнозирование временных рядов. На повестке – перевод статьи How to Develop Multi-Step LSTM Time Series Forecasting Models for Power Usage.
Читать полностью »

Перевод руководства по рекуррентным нейросетям с сайта Tensorflow.org. В материале рассматриваются как встроенные возможности Keras/Tensorflow 2.0 по быстрому построению сеток, так и возможности кастомизации слоев и ячеек. Также рассматриваются случаи и ограничения использования ядра CuDNN позволяющего ускорить процесс обучения нейросети.

Рекуррентные нейронные сети (RNN) с Keras - 1
Читать полностью »

Автоматическое определение эмоций в текстовых беседах с использованием нейронных сетей - 1

Одна из основных задач диалоговых систем состоит не только в предоставлении нужной пользователю информации, но и в генерации как можно более человеческих ответов. А распознание эмоций собеседника – уже не просто крутая фича, это жизненная необходимость. В этой статье мы рассмотрим архитектуру рекуррентной нейросети для определения эмоций в текстовых беседах, которая принимала участие в SemEval-2019 Task 3 “EmoContext”, ежегодном соревновании по компьютерной лингвистике. Задача состояла в классификации эмоций (“happy”, “sad”, “angry” и “others”) в беседе из трех реплик, в которой участвовали чат-бот и человек.

В первой части статьи мы рассмотрим поставленную в EmoContext задачу и предоставленные организаторами данные. Во второй и третьей частях разберём предварительную обработку текста и способы векторного представления слов. В четвёртой части мы опишем архитектуру LSTM, которую мы использовали в соревновании. Код написан на языке Python с использованием библиотеки Keras.
Читать полностью »

Насколько сложна тема машинного обучения? Если Вы неплохо математически подкованы, но объем знаний о машинном обучении стремится к нулю, как далеко Вы сможете зайти в серьезном конкурсе на платформе Kaggle?

Kaggle: не можем ходить — будем бегать - 1
Читать полностью »

image

История

Рекуррентные слои были изобретены еще в 80х Джоном Хопфилдом. Они легли в основу разработанных им искусственных ассоциативных нейронных сетей (сетей Хопфилда). Сегодня рекуррентные сети получили большое распространение в задачах обработки последовательностей: естественных языков, речи, музыки, видеоряда и тд.

Задача

В рамках задачи по Hierarchy reinforcement learning я решил прогнозировать не одно действие агента, а несколько, используя для этого уже пред обученную сеть способную предсказать последовательность действий. В данной статье я покажу как реализовать “sequence to sequence” алгоритм для обучения этой самой сети а в последующей, постараюсь рассказать, как использовать ее в Q-learning обучении.
Читать полностью »

Недавно мы рассказывали про генератор стихов. Одной из особенностей языковой модели, лежащей в его основе, было использование морфологической разметки для получения лучшей согласованности между словами. Однако же у использованной морфоразметки был один фатальный недостаток: она была получена с помощью “закрытой” модели, недоступной для общего использования. Если точнее, выборка, на которой мы обучались, была размечена моделью, созданной для Диалога-2017 и основанной на закрытых технологиях и словарях ABBYY.

Мне очень хотелось избавить генератор от подобных ограничений. Для этого нужно было построить собственный морфологический анализатор. Сначала я делал его частью генератора, но в итоге он вылился в отдельный проект, который, очевидно, может быть использован не только для генерации стихов.

Вместо морфологического движка ABBYY я использовал широко известный pymorphy2. Что в итоге получилось? Спойлер — получилось неплохо.

Читать полностью »

Работа большинства специалистов по речевым технологиям состоит не в том, чтобы придумывать концептуально новые алгоритмы. Компании в основном фокусируются на существующих подходах. Машинный интеллект уже умеет распознавать и синтезировать голос, но не всегда в реальном времени, не всегда локально и не всегда «избирательно» — когда нужно реагировать только на ключевые фразы, робот может ошибаться. Подобными проблемами как раз и заняты разработчики. Муаммар Аль-Шедиват @Laytlas рассказывает об этих и других вопросах, которые пока не удаётся решить даже большим компаниям.

Читать полностью »

Хороший виртуальный ассистент должен не только решать задачи пользователя, но и разумно отвечать на вопрос «Как дела?». Реплик без явной цели очень много, и заготовить ответ на каждую проблематично. Neural Conversational Models — сравнительно новый способ создания диалоговых систем для свободного общения. Его основа — сети, обученные на больших корпусах диалогов из интернета. Борис hr0nix Янгель рассказывает, чем хороши такие модели и как их нужно строить.

Под катом — расшифровка и основная часть слайдов.

Читать полностью »

Эксперименты с malloc и нейронными сетями - 1

Больше года назад, когда я работал антиспамщиком в Mail.Ru Group, на меня накатило, и я написал про эксперименты с malloc. В то время я в свое удовольствие помогал проводить семинары по АКОСу на ФИВТе МФТИ, и шла тема про аллокацию памяти. Тема большая и очень интересная, при этом охватывает как низкий уровень ядра, так и вполне себе алгоритмоемкие структуры. Во всех учебниках написано, что одна из основных проблем динамического распределения памяти — это ее непредсказуемость. Как говорится, знал бы прикуп — жил бы в Сочи. Если бы оракул заранее рассказал весь план по которому будет выделяться и освобождаться память, то можно было составить оптимальную стратегию, минимизирующую фрагментацию кучи, пиковое потребление памяти и т.д. Отсюда пошла возня с ручными аллокаторами. В процессе раздумий я натолкнулся на отсутствие инструментов логирования malloc() и free(). Пришлось их написать! Как раз про это была статья (а ещe я изучал macOS). Были запланированы две части, однако жизнь круто повернулась и стало не до malloc(). Итак, пора восстановить справедливость и реализовать обещанное: ударить глубоким обучением по предсказанию работы с кучей.

Внутри:

  • Совершенствуем libtracemalloc, перехватчик malloc().
  • Строим LSTM на Keras — глубокую рекуррентную сеть.
  • Обучаем модель на примере работы реального приложения (vcmi/vcmi — а вы думали, причем здесь Heroes III?).
  • Удивляемся неожиданно хорошим результатам.
  • Фантазируем про практическое применение технологии.
  • Исходники.

Интересно? Добро пожаловать под кат.

Читать полностью »

В статье представлен алгоритм эвристической сети по некоторым свойствам аналогичный рекуррентной нейронной сети для программы виртуального собеседника. Алгоритм усовершенствован с использованием толкового словаря русского языка. В эвристическую сеть внедрен генератор новых ответов на базе статистической информации базы знаний.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js