Рубрика «рекомендательные системы» - 9

В последнее время на хабре было немало статей про персонализацию и рекомендательные системы. Вообще, это направление кажется одним из наиболее перспективных в анализе данных. Его элементы уже сейчас активно используются, например, в поиске (по некоторым запросам выдача для разных пользователей будет разной) и рекламе (Директ, AdSense). Однако исторически одной из первых областей применения был Amazon, который в начале 2000-х годов разработал и внедрил простейшую рекомендательную систему, основанную на принципах «Посоветовать товар, который другие пользователи, купившие такой же товар, как и данный покупатель, купили». Собственно, отсюда и растут ноги у одного из блоков рекомендаций на Амазоне — «What Other Items Do Customers Buy After Viewing This Item?». Разумеется, сейчас под этой вывеской показываются результаты работы гораздо более хитроумного алгоритма.
* Для публикации в хаб «Я пиарюсь» не хватает кармы, поэтому публикую в релевантный тематике хаб.
Читать полностью »

В прошлый раз я рассказывал о теореме Байеса и приводил простой пример – наивный байесовский классификатор. В этот раз мы перейдём к более сложной теме, которая развивает и продолжает дело наивного байеса: мы научимся выделять темы при помощи модели LDA (latent Dirichlet allocation), а также применим это к рекомендательным системам.

Рекомендательные системы: LDA
Читать полностью »

В этой части мы не будем говорить о рекомендательных системах как таковых. Вместо этого мы отдельно сконцентрируемся на главном инструменте машинного обучения — теореме Байеса — и рассмотрим один простой пример её применения — наивный байесовский классификатор. Disclaimer: знакомому с предметом читателю я вряд ли тут сообщу что-то новое, поговорим в основном о базовой философии машинного обучения.

image
Читать полностью »

image

Недавно наткнулся на новомодный тренд: рекомендательные системы, — на конкретного его представителя Surfingbird (нет, я не сотрудник данной компании). Сразу встал вопрос, как я могу на этом заработать, не стоит ли готовиться к очередной смене схемы поведения пользователей в сети?

Почему так серьезно?

Читать полностью »

26 апреля стартовал конкурс рекомендательных систем Million Song Dataset Challenge. Завершение — через три месяца, 9 августа. В ходе конкурса нужно построить систему, которая по 100% истории прослушивания музыки для 1М пользователей и 50% истории для 100К пользователей сможет максимально точно достроить недостающие 50%. При этом доступны не только данные по прослушиванию, но и обширная база метаданных и даных по контенту от The EchoNest, MusicXMatch и Last.fm. При желании можно пользоваться любыми другими данными (у многих других музыкальных сервисов есть API, через который можно выудить ценную информацию).

Организаторы — CAL UCSD, LabROSA CU, IMIRSEL и UIUC.

Как такового приза у конкурса нет, но компания Zvooq решила сделать его чуть более интересным для российских участников. Лучшая команда из России (вне зависимости от абсолютного места) получит $5000 и возможность бесплатно отправить одного участника на ISMIR 2012.

Условия получения этого бонуса — все участники команды должны проживать в РФ, должно быть опубликовано описание используемого подхода (например, на Хабре или arxiv.org), команда должна заявить о себе на challenge@zvooq.com.

Читать полностью »

В предыдущих сериях мы обсудили, что такое сингулярное разложение (SVD), и сформулировали модель сингулярного разложения с базовыми предикторами. В прошлый раз мы уже довели дело до конкретных формул апдейта. Сегодня я продемонстрирую очень простую реализацию очень простой модели, мы применим её к уже знакомой матрице рейтингов, а потом обсудим, какие получились результаты.
Рекомендательные системы: SVD на perl

Читать полностью »

В прошлый раз я рассказал, пока в самых общих чертах, о сингулярном разложении – главном инструменте современной коллаборативной фильтрации. Однако в прошлый раз мы в основном говорили только об общих математических фактах: о том, что SVD – это очень крутая штука, которая даёт хорошие низкоранговые приближения. Сегодня мы продолжим разговор об SVD и обсудим, как же, собственно, использовать всю эту математику на практике.
image

Читать полностью »

Продолжаем разговор о рекомендательных системах. В прошлый раз мы сделали первую попытку определить схожесть между пользователями и схожесть между продуктами. Сегодня мы подойдём к той же задаче с другой стороны – попытаемся обучить факторы, характеризующие пользователей и продукты. Если Васе из предыдущего поста нравятся фильмы о тракторах и не нравятся фильмы о поросятах, а Петру – наоборот, было бы просто замечательно научиться понимать, какие фильмы «о поросятах», и рекомендовать их Петру, а какие фильмы – «о тракторах», и рекомендовать их Васе.

image
Читать полностью »

Итак, в прошлый раз мы немного поговорили о том, что такое вообще рекомендательные системы и какие перед ними стоят проблемы, а также о том, как выглядит постановка задачи коллаборативной фильтрации. Сегодня я расскажу об одном из самых простых и естественных методов коллаборативной фильтрации, с которого в 90-х годах и начались исследования в этой области. Базовая идея очень проста: как понять, понравится ли Васе фильм «Трактористы»? Нужно просто найти других пользователей, похожих на Васю, и посмотреть, какие рейтинги они ставили «Трактористам». Или с другой стороны: как понять, понравится ли фильм «Трактористы» Васе? Нужно просто найти другиеЧитать полностью »

Всем привет! Меня зовут Сергей, я математик, и я определяю развитие рекомендательной системы Surfingbird. Этой статьёй мы открываем цикл, посвящённый машинному обучению и рекомендательным системам в частности – пока не знаю, сколько в цикле будет инсталляций, но постараюсь писать их регулярно. Сегодня я расскажу вам, что такое рекомендательные системы вообще, и поставлю задачу чуть более формально, а в следующих сериях мы начнём говорить о том, как её решать и как учится наша рекомендательная система Tachikoma.

image

Рекомендательные системы – это модели, которые лучше васЧитать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js