Рубрика «рекомендательные системы» - 7

Школа Данных «Билайн», для менеджеров - 1

Привет!

Итак, мы запустили третий курс Школы Данных «Билайн». Подробный отчет о занятиях от одного из участников можно почитать здесь.

Отчеты о работе Школы мы также будем выкладывать на официальной странице Школы в Facebook. Там же будем отвечать на вопросы, которые также можно направлять на dataschool@beeline.digital.

Набираем 4-ый курс, который стартует с 4 апреля. Запись, как всегда, на странице Школы.

Однако, данный пост не только об этом. До сих пор в Школе Данных мы учили аналитиков, учили тому, как применять методы машинного обучения для решения практических задач. Однако, практически любая практическая задача начинается с бизнес-потребности и бизнес- постановки.

Мы сейчас не будем говорить о том, что на заре больших данных считалось, что основные инсайты и применения аналитики идут скорее от данных. Это безусловно есть, но в нашей практике это происходит в соотношении 80 к 20, где 80 процентов всех задач для аналитика или даже больше рождается от бизнеса.

Однако, как же бизнес генерит эти задачи, если он, бизнес, не разбирается в аналитике данных? Да, очень просто. В нашей компании мы потратили какое-то время на объяснение бизнесу возможностей аналитики данных и теперь разные подразделения заваливают нас заказами придумывая все новые применения этим инструментам.
Читать полностью »

Школа Данных «Билайн», каникулы закончились - 1

Привет!

Надеемся, что в Новогодние праздники многие из Вас отлично отдохнули. Но, каникулы закончились. Пора вернуться к машинному обучению и анализу данных. С 25 января мы запускаем третий набор Школы Данных «Билайн».

В прошлом посте мы обещали вам более детально рассказать, чему мы учим на наших занятиях по анализу текстов. В данном посте мы данное обещание исполняем.

Кстати, если вы уже активно занимаетесь анализом и обработкой текстов и хотите попробовать себя, рекомендуем поиграться с задачей The Allen AI Science Challenge на Kaggle=) и заодно поучаствовать в DeepHack, хакатоне по анализу текстов и построению ответных систем.

Про то, чему мы учим на наших занятиях по обработке текстов дальше.
Читать полностью »

Фестиваль Данных в музее Москвы, как это было - 1

Привет Хабр,

Итак, мы провели Фестиваль Данных на выставке новых технологий SMIT в Музее Москвы, о котором писали здесь.

Это первое мероприятие из серии, в которой мы собираем экспертов из разных областей бизнеса, науки и государственного управления и рассказываем про аналитику данных.

Хранение и анализ данных, которые были прерогативой узкого круга компаний и людей теперь начинают затрагивать жизнь практически всех. По этой причине мы и начали данную серию мероприятий, где мы широкой аудитории рассказываем про данные и их аналитику.
Читать полностью »

Фестиваль данных в музее Москвы, или как Big Data помогает жить и работать - 1

Привет Хабр,

Если вам давно было интересно, как Big Data применяется в разных областях бизнеса, науки и государственного управления и это хотелось услышать от самих людей, которые этим занимаются, то добро пожаловать на Фестиваль Данных, который будет проходить 19 декабря на Выставке Высоких Технологий SMIT в Музее Москвы.

В течение нескольких часов работы Фестиваля ведущие эксперты отрасли из Yandex, Школы Данных «Билайн», Data-Centric Alliance, Авито, ГУП «НИ и ПИ Генплана Москвы, НИУ ВШЭ расскажут гостям выставки о перспективах использования анализа данных в ближайшие несколько лет.
Читать полностью »

image

Мы собрали примеры того, как медиа привлекают аудиторию с помощью математических алгоритмов, роботов и других чисто технических примочек.
Читать полностью »

recommendationРекомендательные системы ежедневно влияют на решения, принимаемые в процессе пользования интернет-ресурсами. В то время как при разработке и внедрении значительное внимание уделяется таким вопросам, как точность и приватность рекомендаций, долгосрочная взаимная обратная связь между рекомендательными системами и рекомендациями пользователей никогда не подвергалась серьезным исследованиям.

Несмотря на распространенное мнение, что рекомендации помогают пользователям находить что-то новое, длительное применение рекомендательных систем может способствовать чрезвычайному росту популярности некоторых элементов и, в конечном счете, сужать выбор пользователя. Эти результаты подтверждаются некоторыми исследованиями в реальных системах.Читать полностью »

image

Рекомендательные системы (далее РС) анализируют интересы пользователей и пытаются предсказать, что именно будет наиболее интересно для конкретного пользователя в данный момент времени.

Рекомендательная система выявляет потребности посетителей вашего интернет-магазина и в нужный момент делает интересные именно им предложения на сайте, увеличивая доход интернет-магазина за счет роста конверсии, среднего чека и частоты повторных покупок. По результатам А/Б тестов можно ожидать рост выручки до 50%

Такие сервисы анализируют всю доступную информацию:

  1. поведение пользователя на сайте,
  2. просмотренные товары,
  3. историю заказов,
  4. информацию о нем из соцсетей.

В этот статье рассмотрим основное применение рекомендательных систем — персональные товарные рекомендации, а также два кейса подключения РС к интернет-магазину.
Читать полностью »

image

Одной из самых перспективных направлений нашей маркетинговой компании Invola является внедрение сервиса товарных рекомендаций для интернет-магазинов.

Разберемся, что такое вообще товарные рекомендации -

Читать полностью »

Немного о лаборатории Data Science в Билайне - 1

Привет! Меня зовут Александр Крот, я отвечаю за разработку алгоритмов машинного обучения и интеллектуального анализа данных в компании Билайн, а также за подготовку и отбор специалистов по работе с данными под руководством Сергея Марина, который ранее знакомил Вас с работой нашего подразделения Big Data. Я уже писал про отдельные аспекты Big Data и Machine Learning, но сегодня я расскажу, как это устроено на практике, а именно — как мы в Билайн решаем задачи, связанные с анализом больших данных, как отбираем специалистов, какие инструменты и методы применяем на практике.
Читать полностью »

Big Data в Билайне: реальный опыт - 1

Привет! Меня зовут Александр Крот, я отвечаю за разработку алгоритмов машинного обучения и интеллектуального анализа данных в компании Билайн, а также за подготовку и отбор специалистов по работе с данными под руководством Сергея Марина, который ранее знакомил Вас с работой нашего подразделения Big Data. Я уже писал про отдельные аспекты Big Data и Machine Learning, но сегодня я расскажу, как это устроено на практике, а именно — как мы в Билайн решаем задачи, связанные с анализом больших данных, как отбираем специалистов, какие инструменты и методы применяем на практике.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js