Рубрика «рекомендательные системы» - 6

Мы продолжаем рассказывать об системе адаптивного обучения на Stepic.org. Первую вводную часть этой серии можно почитать здесь.

В данной статье мы расскажем о построении рекомендательной системы (которая и лежит в основе адаптивности). Расскажем о сборе и обработке пользовательских данных, о графах переходов, хендлерах, оценке реакции пользователя, формировании выдачи.

Вспомним про линейную регрессию, регуляризацию и даже поймём, почему в нашем случае лучше использовать гребневую регрессию, а не какую-нибудь там ещё.

Рекомендательные системы в онлайн-образовании. Продолжение - 1

Читать полностью »

image

Drive.ru и Drive2.ru — крупнейшее медиа об авто и сообщество, где пользователи пишут обо всем, что связано с автомобилями. Оба проекта используют рекомендательные технологии Relap.io. Мы расспросили Юрия Белоусова, директора по развитию проектов, как у них все устроено.

О чем говорили:

— Об истории проекта.

— О посещаемости и трафике.

— О деньгах и рекламе.

— О пользовательском контенте и СМИ 3.0.

— Как DRIVE2 помогает продавать авто.

— О достигнутом и планах.
Читать полностью »

28 апреля 2016 года мы официально объявили о запуске первого адаптивного курса на Stepic.org, который подбирает задачи по Python в зависимости от уровня учащегося. До этого мы ещё реализовали на платформе рекомендованные уроки, чтоб учащиеся как не забывали, что они уже прошли, так и открывали для себя новые темы, которые могут их заинтересовать.

Этой статьёй мы начинаем цикл о рекомендательных системах и адаптивном обучении.

Под катом две основные темы:

  • про онлайн-образование, плюсы/минусы/подводные камни;
  • классификация рекомендательных систем, их применимость в образовании, примеры.

Рекомендательные системы в онлайн-образовании - 1

Читать полностью »

bayesian

Почему?

Сейчас Relap.io генерирует 40 миллиардов рекомендаций в месяц на 2000 медиаплощадках Рунета. Почти любая рекомендательная система, рано или поздно, приходит к необходимости брать в расчет содержимое рекомендуемого контента, и довольно быстро упирается в необходимость как-то его классифицировать: найти какие-то кластеры или хотя бы понизить размерность для описания интересов пользователей, привлечения рекламодателей или еще для каких-то темных или не очень целей.

Задача звучит довольно очевидно и существует немало хорошо зарекомендовавших себя алгоритмов и их реализаций: Латентное размещение Дирихле (LDA), Вероятностный латентно-семантический анализ (pLSA), явный семантический анализ (ESA), список можно продолжить. Однако, мы решили попробовать придумать что-нибудь более простое, но вместе с тем, жизнеспособное.
Читать полностью »

image

Коммерческий успех медиа сильно завистит от удобства для пользователя. Удобное медиа — это больше показов страниц, больше времени на сайте и больше денег.

Площадки, которые пользуются Relap.io рассказывают, что дает им рекомендательная система и платформа для нативной рекламы.
Читать полностью »

Школа Данных «Билайн»: весна, знания, новый курс - 1

Привет.

Итак, третий курс Школы Данных «Билайн» подходит к завершению и мы набираем четвёртый.

У нас 18 занятий, 36 часов, все основные темы машинного обучения и анализа данных, куча практики, куча домашек, два Kaggle соревнования, презентации и воркшопы от партнеров, возможность устройства в Билайн в команду BigData для лучших студентов, сокурсники из различных областей бизнеса, где применяется машинное обучение и много чего ещё.
Читать полностью »

Во время общения с медиа мы в Relap.io часто сталкиваемся с массой заблуждений, в которые все верят, потому что так сложилось исторически. На сайте есть блоки типа «Читать также» или «Самое горячее» и т.п. Словом, всё то, что составляет обвязку статьи и стремится дополнить UX дорогого читателя. Мы расскажем, какие заблуждения есть у СМИ, которые делают контентные рекомендации, и развеем их цифрами.

HAbr1

Читать полностью »

Во время общения с медиа мы в Relap.io часто сталкиваемся с массой заблуждений, в которые все верят, потому что так сложилось исторически. На сайте есть блоки типа «Читать также» или «Самое горячее» и т.п. Словом, всё то, что составляет обвязку статьи и стремится дополнить UX дорогого читателя. Мы расскажем, какие заблуждения есть у СМИ, которые делают контентные рекомендации, и развеем их цифрами.
 
HAbr1
 
 

Рекомендовать по тегам

Самое большое и самое популярное заблуждение. Чаще всего СМИ делают рекомендации в конце статьи по тегам. Так поступает Look At Me и РБК, например. Есть материал с тегами: трактор, Путин, сыр. К нему выводятся тексты про трактора, про Путина и сыр. На первый взгляд, логично:
вилладж
Подобная механика рекомендаций в реальной жизни выглядела бы так. Вы идёте в магазин за продуктами. И кладёте в корзину сливочное масло. К вам подходит консультант с потными от волнения ладошками и говорит: «О, я вижу, вы взяли масло и это значит, что вам нужно масло. Возьмите еще пять видов сливочного деревенского и подсолнечного и козьего масла». Максимум, что может случиться из ряда вон выходящее — вам предложат трансмиссионное, если вы читали что-то про автомобили. И это уже будет считаться rocket science.Читать полностью »

image

Сервис зацикленных видео COUB – одна из первых площадок, которая начала использовать наши технологии для персонализации сайта. Основатель сервиса Михаил Табунов рассказал, как устроен COUB​ и почему не надо делать свою рекомендательную систему, когда есть Relap.io​.

О чем говорили:

  • Как COUB перестал делать свою рекомендательную систему и почему не советует делать ее остальным.
  • Как делать спецпроекты на 1 миллион охвата на сайте, где контент генерируют пользователи.
  • Люди делятся тем, что создают. Как юзеры взяли на себя продвижение COUB.
  • Почему новые сервисы для планирования не могут победить Exel.
  • Где искать идеи и кого читать.

 

Relap.io сейчас формирует весь блок рекомендаций под коубами. Почему вы не сделали свою рекомендательную систему?

На самом деле мы её сделали, и даже было несколько версий. Когда решили сравнить конверсию с Relap, то оказалось, что Relap дает в два раза больше переходов по рекомендациям. Мы пробовали несколько алгоритмов: ставили похожие по тегам коубы, самый «горячий» контент и контент, который похож по содержимому. В результате у нашего алгоритма было максимум 25% конверсии, а у Relap доходило до 50%.Читать полностью »

Мы давно ничего не писали в наш блог и возвращаемся с рассказом о нашем новом проекте: Relap.io (relevant pages).

Мы запустили рекомендательный B2B-сервис Relap.io полтора года назад. Он облегчает жизнь редакции и читателям СМИ. В будние дни Relap.io обслуживает 15 млн уников и выдаёт 30 миллиардов рекомендаций в месяц.

Сейчас Relap.io крупнейшая рекомендательная платформа в Европе и Азии.

image
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js