Рубрика «рекомендательные системы» - 2

Привет! Меня зовут Николай, и я занимаюсь построением и внедрением моделей машинного обучения в Сбербанке. Сегодня расскажу о разработке рекомендательной системы для платежей и переводов в приложении на ваших смартфонах.

Как мы внедрили ML в приложение с почти 50 миллионами пользователей. Опыт Сбера - 1
Дизайн главного экрана мобильного приложения с рекомендациями

У нас было 2 сотни тысяч возможных вариантов платежей, 55 миллионов клиентов, 5 различных банковских источников, полсолонки разработчиков и гора банковской активности, алгоритмов и всего такого, всех цветов, а ещё литр рандомных сидов, ящик гиперпараметров, пол-литра поправочных коэффициентов и две дюжины библиотек. Не то чтобы это всё было нужно в работе, но раз начал улучшать жизнь клиентов, то иди в своём увлечении до конца. Под катом история о сражении за UX, о правильной постановке задачи, о борьбе с размерностью данных, о вкладе в open-source и наших результатах.

Читать полностью »

Жадный подход и игровые автоматы. Разбор задач ML-трека чемпионата по программированию - 1

Мы продолжаем публиковать разборы задач, которые предлагались на недавнем чемпионате. На очереди — задачи, взятые из квалификационного раунда для специалистов по машинному обучению. Это третий трек из четырёх (бэкенд, фронтенд, ML, аналитика). Участникам нужно было сделать модель исправления опечаток в текстах, предложить стратегию игры на игровых автоматах, довести до ума систему рекомендаций контента и составить ещё несколько программ.

Читать полностью »

Машинное обучение vs. аналитический подход - 1

Какое-то время назад мы нашли свои старые материалы, по которым обучали первые потоки на наших курсах машинного обучения в Школе Данных и сравнили их с теперешними. Мы удивились, сколько всего мы добавили и поменяли за 5 лет обучения. Осознав, почему мы это сделали и как, на самом деле, поменялся подход к решению задач Data Science, мы решили написать вот эту публикацию.Читать полностью »

YouTube ужесточает правила, чтобы защитить сообщество от педофилов - 1

YouTube продолжает борьбу с педофилами, которые отыскивают на ресурсе видеоролики с детьми. В начале июня представители компании опубликовали отчет, где рассказали о мерах предосторожности, уже внедренных на данный момент, и отдельных нововведениях. Основным среди последних является ограничение на публикацию стримов для несовершеннолетних: теперь материалы без присутствия взрослых в кадре будут удаляться.
Читать полностью »

Всем привет. Моя команда в Тинькофф занимается построением рекомендательных систем. Если вы довольны вашим ежемесячным кэшбэком, то это наших рук дело. Также мы построили рекомендательную систему спецпредложений от партнеров и занимается индивидуальными подборками Stories в приложении Tinkoff. А еще мы любим участвовать в соревнованиях по машинному обучению чтобы держать себя в тонусе.

На Boosters.pro в течении двух месяцев с 18 февраля по 18 апреля проходило соревнование по построению рекомендательной системы на реальных данных одного из крупнейших российских онлайн-кинотеатров Okko. Организаторы преследовали цель улучшить существующую рекомендательную систему. На данный момент соревнование доступно в режиме песочницы, в которой вы можете проверить свои подходы и отточить навыки в построении рекомендательных систем.

alt_text

Читать полностью »

Rekko — персональные рекомендации в онлайн-кинотеатре Okko

Знакома ли вам ситуация, когда на выбор фильма вы тратите гигантское количество времени, сопоставимое со временем самого просмотра? Для пользователей онлайн-кинотеатров это частая проблема, а для самих кинотеатров — упущенная прибыль.

К счастью, у нас есть Rekko — система персональных рекомендаций, которая уже год успешно помогает пользователям Okko выбирать фильмы и сериалы из более чем десяти тысяч единиц контента. В статье я расскажу вам как она устроена с алгоритмической и технической точек зрения, как мы подходим к её разработке и как оцениваем результаты. Ну и про сами результаты годового A/B теста тоже расскажу.

Читать полностью »

Рекомендательные системы: идеи, подходы, задачи - 1

Многие привыкли ставить оценку фильму на КиноПоиске или imdb после просмотра, а разделы «С этим товаром также покупали» и «Популярные товары» есть в любом интернет- магазине. Но существуют и менее привычные виды рекомендаций. В этой статье я расскажу о том, какие задачи решают рекомендательные системы, куда бежать и что гуглить.
Читать полностью »

Важнее всего для сервиса Яндекс.Дзен — развивать и поддерживать платформу, которая соединяет аудитории с авторами. Чтобы быть привлекательной платформой для хороших авторов, Дзен должен уметь находить релевантную аудиторию для каналов, пишущих на любые темы, в том числе на самые узкие. Руководитель группы счастья авторов Борис Шарчилев рассказал про автороцентричное ранжирование, которое подбирает для авторов наиболее релевантных пользователей. Из доклада можно узнать о том, чем такой подход отличается от подбора релевантных айтемов — более популярного в рекомендательных системах.

Балансируя пользователецентричное и автороцентричное ранжирование, мы можем добиваться правильного соотношения счастья пользователей и счастья авторов.

Читать полностью »

Почти у всех рекомендательных систем есть трудности с новым или редким контентом — поскольку с ним взаимодействовала лишь незначительная часть пользователей. В своём докладе на встрече «Яндекс изнутри» Даниил Бурлаков поделился набором трюков, которые используются в рекомендациях Музыки, и подробно разобрал популярную модель Singular Value Decomposition (SVD).

Плюс у нас есть такие исполнители, которые называются композиторами и обычно проставляются правообладателями просто веером. Только у одного Моцарта было «записано» более миллиона композиций.

— Всем привет! Меня зовут Даниил Бурлаков, я руковожу командой рекомендаций в Медиасервисах. Сегодня хочу рассказать про некоторые проблемы, которые мы решаем, когда занимаемся рекомендациями в Музыке.

Читать полностью »

image

В этой статье я хочу рассказать о том, как мы создали систему поиска похожей одежды (точнее одежды, обуви и сумок) по фотографии. То есть, выражаясь бизнес-терминами, рекомендательный сервис на основе нейронных сетей.

Как и большинство современных IT-решений, можно сравнить разработку нашей системы со сборкой конструктора Lego, когда мы берем много маленьких деталек, инструкцию и создаем из этого готовую модель. Вот такую инструкцию: какие детали взять и как их применить для того, чтобы ваша GPU смогла подбирать похожие товары по фотографии, — вы и найдете в этой статье.

Из каких деталей построена наша система:

  • детектор и классификатор одежды, обуви и сумок на изображениях;
  • краулер, индексатор или модуль работы с электронными каталогами магазинов;
  • модуль поиска похожих изображений;
  • JSON-API для удобного взаимодействия с любым устройством и сервисом;
  • веб-интерфейс или мобильное приложение для просмотра результатов.

В конце статьи будут описаны все “грабли”, на которые мы наступили во время разработки и рекомендации, как их нейтрализовать.

Постановка задачи и создание рубрикатора

Задача и основной use-case системы звучит довольно просто и понятно:

  • пользователь подает на вход (например, посредством мобильного приложения) фотографию, на которой присутствуют предметы одежды и/или сумки и/или обувь;
  • система определяет (детектирует) все эти предметы;
  • находит к каждому из них максимально похожие (релевантные) товары в реальных интернет-магазинах;
  • выдает пользователю товары с возможностью перейти на конкретную страницу товара для покупки.

Говоря проще, цель нашей системы — ответить на знаменитый вопрос: “А у вас нет такого же, только с перламутровыми пуговицами?”
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js