В современном мире анализа данных регрессионный анализ занимает центральное место, предоставляя мощные инструменты для выявления и количественной оценки взаимосвязей между переменными. Он позволяет исследователям и аналитикам не только описывать существующие зависимости, но и прогнозировать поведение систем на основе имеющихся данных. Одним из наиболее распространенных методов регрессионного анализа является метод наименьших квадратов, который стремится минимизировать сумму квадратов отклонений между наблюдаемыми и предсказанными значениями.
Рубрика «регрессия»
Многофакторное аппроксимирование на платформе .Net. Часть первая. Теория
2025-02-02 в 6:16, admin, рубрики: C#, аппроксимация, регрессияТеорема о разбиении регрессоров: делаем CUPED аб-тесты в один шаг
2024-09-16 в 16:31, admin, рубрики: cuped, АБ-тесты, регрессионный анализ, регрессия, Теорема о разбиении регрессоровХай!
Пишу эту статью для тех, кто уже знаком с CUPED, но ищет больше понимания этого метода и взгляда на него с другой стороны. Здесь я не буду детально объяснять базовый алгоритм CUPED аб-тестирования: про это уже достаточно материала в сети. Основное внимание уделим рассмотрению метода через призму регрессий. Цель статьи - познакомить читателя с теоремой, безумно полезной для понимания работы регрессий, а главное - продемонстрировать, как с помощью этой теоремы проводить CUPED тесты не в три последовательных шага (как в базовом алгоритме), а с помощью одной регрессии.
Содержание:
-
Освежаем в голове CUPED
Регрессия и функции с неустранимыми разрывами первого рода
2022-02-19 в 14:20, admin, рубрики: R, регрессия, функции, язык rО пакете BinSeqBstrap
Постановка задачи
Допустим, у нас есть какая кусочно-гладкая функция f(x), к который прибавлен некий случайный шум, соответствующий условиям Гаусса-Маркова. И все хорошо, только эта самая функция f(x) – функция с неустранимым(-и) разрывом(-ами) первого рода, то есть в какой-то точке левый и правый предел этой функции равны разным числам, а у функции есть скачок. Задача – как-то нужно научить алгоритм распознавать этот скачок.
Минутка теории
Теоретические основы изложены в виньетке, написанной Кэти МакДэйд и Флориана Пэйна из Кэмбриджа, опубликованной Читать полностью »
Учебное пособие по TensorFlow: 10 минутное практическое занятие по TensorFlow для начинающих [перевод]
2019-09-01 в 9:22, admin, рубрики: python, TensorFlow, tutorial, искусственный интеллект, машинное обучение, основы, регрессияПривет! Представляю вашему вниманию перевод статьи "TensorFlow Tutorial: 10 minutes Practical TensorFlow lesson for quick learners" автора Ankit Sachan.
Этот туториал по TensorFlow предназначен для тех, кто имеет общее представление о машинном обучении и пытается начать работу с TensorFlow.
Как выявляют риски в госконтроле и зачем для этого машинное обучение
2018-08-31 в 15:33, admin, рубрики: big data, risk management, risk-based approach, Блог компании SAS, выявление аномалий, государственный контроль, дерево решений, машинное обучение, регрессия, риск-ориентированное мышление, риски, управление проектами, управление рискамиВ предыдущей статье на тему государственного риск-менеджмента мы прошлись по основам: зачем государственным органам управлять рисками, где их искать и какие существуют подходы к оценке. Сегодня поговорим о процессе анализа рисков: как выявить причины их возникновения и обнаружить нарушителей.
Читать полностью »
Как мы сократили время на разработку скоринговых моделей в пять раз, переключившись на Python
2018-08-24 в 8:40, admin, рубрики: Credit Scoring, data mining, data science, machine learning, python, Алгоритмы, банкинг, Блог компании ID Finance, машинное обучение, регрессияСейчас все очень много говорят про искусственный интеллект и его применение во всех сферах работы компании. Однако есть некоторые области, где еще с давних времён главенствует один вид модели, так называемый «белый ящик» — логистическая регрессия. Одна из таких областей – банковский кредитный скоринг.
Читать полностью »
Модель полиномиальной регрессии
2018-06-15 в 17:03, admin, рубрики: временные ряды, математика, математическая статистика, регрессияВыражаясь простым языком, модель регрессии в математической статистике строится на основе известных данных, в роли которых выступают пары чисел. Количество таких пар заранее определено. Если представить себе, что первое число в паре – это значение координаты , а второе –
, то множество таких пар чисел можно представить на плоскости в декартовой системе координат в виде множества точек. Данные пары чисел берутся не случайно. На практике, как правило, второе число зависит от первого. Построить регрессию – это значит подобрать такую линию (точнее, функцию), которая как можно точнее приближает к себе (аппроксимирует) множество вышесказанных точек.
Задача алгоритмов искусственного интеллекта обучиться, основываясь на предоставленной выборке, для последующего предсказания данных. Однако, наиболее распространенная задача о которой говорят в большинстве учебниках — это предсказание одного значения, того или иного множества признаков. Что если нам нужно получить обратные данные? То есть, получить определенное количество признаков, основываясь на одном или больше значении.
Читать полностью »
Идентификация коинтегрированных пар акций на фондовых рынках
2017-07-13 в 7:05, admin, рубрики: анализ временных рядов, коинтеграция, математика, регрессия, случайные процессы, тест Энгла-Грэнджера, метки: коинтеграция, тест Энгла-ГрэнджераЦель данной статьи — поделиться результатами исследования по выявлению коинтегрированных пар акций, которые представлены на Московской и Нью-Йоркской биржах, с помощью теста Энгла-Грэнджера.
Если мы возьмём две акции со стационарными приращениями, и найдём их некоторую линейную комбинацию (спред), которая будет стационарна, то такой временной ряд будет называться коинтегрированным. Наличие коинтеграции даёт нам возможность захеджироваться акциями и построить рыночно-нейтральную стратегию. Почему это возможно?
Читать полностью »
Обзор Splunk Machine Learning Toolkit
2017-05-05 в 5:19, admin, рубрики: dashboard, machine learning, splunk, анализ данных, анализ логов, Блог компании TS Solution, логи, машинное обучение, определение зависимостей, прогнозирование, регрессия, Серверное администрирование, Сетевые технологии, системное администрирование
Помимо того, что Splunk может собирать логи практически из любых источников и строить аналитические отчеты, дашборды, алерты на основе встроенного языка поисковых запросов SPL, о котором мы писали в предыдущих статьях, Splunk еще имеет очень большую базу бесплатных аддонов и приложений.
Сегодня мы рассмотрим одно из самых популярных, с точки зрения пользователей, приложений — Splunk Machine Learning Toolkit.
Читать полностью »