Рубрика «распределённые вычисления» - 2

Привет!

Некоторое время мы присматриваемся к книгам по Kubernetes, благо, они уже выходят и в Manning, и в O'Reilly. Можно согласиться, что Kubernetes в наших краях пока интересен скорее с ознакомительной и инженерной, нежели с практической точки зрения. Однако, мы все-таки поставим здесь обложку с книги о Kubernetes и перевод статьи Дэниэла Морсинга, который сделал у себя в блоге интересный тизер об этой системе.

Попробуем оценить Kubernetes - 1
Приятного чтения!
Читать полностью »

Сегодня мы дадим ответ на простой вопрос: "Как работает распределённое обучение (в контексте MXNet)?"

Все примеры кода протестированные на MXNet v0.10.0 и могут не работать (или работать по-другому) в других версиях, однако полагаю, что общие концепции будут неизменимы еще долго.

Ну и последнее перед тем, как мы перейдем к основной части, я хочу выразить благодарность за помощь в написании статьи моим коллегам, без которых эта статья не была бы возможной:

  • Madan Jampani;
  • Suneel Marthi;

Еще хотел бы порекомендовать поднять машинку с DLAMI и выполнить все примеры из статьи самостоятельно, тем более, что они достаточно простые. Для выполнения кода вполне себе подойдет бесплатная машинка на AWS.

С преамбулой окончено, лезем под кат...

Читать полностью »

Обзор возможностей библиотеки Apache Curator для Apache Zookeeper - 1

По долгу работы мне приходится сталкиваться с проектированием и разработкой распределенных приложений. Такие приложения часто используют различные средства межпроцессного взаимодействия для организации взаимодействия компонентов. Особые сложности возникают в процессе реализации алгоритмов, обрабатывающих связанные данные распределенно. Для поддержки таких задач используются специализированные системы распределенной координации. Самым популярным и широко используемым продуктом является Apache Zookeeper.Читать полностью »

Всем привет!

Я снова буду рассказывать о геоинформационных технологиях.
Этой статьей я начинаю серию о технологиях на стыке миров классических ГИС и все еще модного направления BigData. Я расскажу о ключевых особенностях применения распределенных вычислений к работе с геоданными, а также сделаю краткий обзор существующих инструментов.

Сегодня нас окружает огромное количество неструктурированных данных, которые до недавнего времени было немыслимо обработать. Примером таких данных могут служить, например, данные метеодатчиков, используемые для точного прогноза погоды. Более структурированные, но не менее массивные датасеты – это, например, спутниковые снимки (алгоритмам обработки снимков c помощью машинного обучения даже посвящен ряд статей у сообщества OpenDataScience). Набор снимков высокого разрешения, допустим, на всю Россию занимает несколько петабайт данных. Или история правок OpenStreetMap — это терабайт xml. Или данные лазерного сканирования. Наконец, данные с огромного количество датчиков, которыми обвешано множество техники – от дронов до тракторов (да, я про IoT). Более того, в цифровую эпоху мы сами создаем данные, многие из которых содержат в себе информацию о местоположении. Мобильная связь, приложения на смартфонах, кредитные карты – все это создает наш цифровой портрет в пространстве. Множества этих портретов создают поистине монструозные наборы неструктурированных данных.

ГИС и распределенные вычисления - 1
На рисунке — визуализация треков OpenStreetMap с помощью GeoWave

Где стык ГИС и распределенных вычислений? Что такое «большие геоданные»? Какие инструменты помогут нам? Читать полностью »

В предыдущей статье — часть 1, обзорная — я рассказал о том, зачем нужны распределенные структуры данных (далее — РСД) и разобрал несколько вариантов, предлагаемых распределенным кешем Apache Ignite.

Сегодня же я хочу рассказать о подробностях реализации конкретных РСД, а также провести небольшой ликбез по распределенным кешам.

Итак:

Распределенные структуры данных (часть 2, как это сделано) - 1

Читать полностью »

Давным давно, когда деревья компьютеры были большими, а процессоры одноядерными, все приложения запускались в один поток и не испытывали сложностей синхронизации.

Современные же приложения стремятся использовать все имеющиеся ресурсы, в частности, все доступные CPU.

К сожалению, использовать стандартные структуры данных при многопоточной обработке не представляется возможным, поэтому в Java 5 появились потокобезопасные структуры данных,
т.е. функционирующие исправно, при использовании из нескольких потоков одновременно, и расположились они в пакете java.util.concurrent.

Про Vector...

На самом деле, потокобезопасные, но неэффективные, структуры данных, как, например, Vector и Hashtable, появились еще в Java 1.0.
В настоящий момент, они не рекомендуются к использованию.

Однако, не взирая на всю технологическую мощь, заложенную в пакет java.util.concurrent, обработка информации потокобезопасными коллекциями возможна лишь в рамках одного компьютера, а это порождает проблему масштабируемости.

Распределенные структуры данных [часть 1, обзорная] - 1
Читать полностью »

Google изобрела распределённый ИИ для миллиарда смартфонов - 1

Только подумайте, какова совокупная вычислительная мощность всех смартфонов в мире? Это огромнейший вычислительный ресурс, который вполне может эмулировать даже работу человеческого мозга. Нельзя, чтобы такой ресурс простаивал без дела, тупо прожигая киловатты энергии на чатики и ленты социальных сетей. Если отдать эти вычислительные ресурсы единому распределённому мировому ИИ, да ещё снабдить его данными с пользовательских смартфонов — для обучения — то такая система может осуществить качественный скачок в данной области.
Читать полностью »

Что такое Akka?

Масштабируемая, распределенная обработка транзакций в реальном времени

Мы верим, что написание корректных, параллельных, отказоустойчивых и масштабируемых приложений это сложно.

В большинстве случаев это связано с тем, что мы используем неправильные инструменты и неправильный уровень абстракции. Akka создана для того, чтобы изменить это. Читать полностью »

Большинство сложных задач с данными требуют немалого количества ресурсов. Поэтому почти у каждого дата-центра в мире не один, а множество клиентов — даже если все они выступают под общим брендом. Компаниям нужны мощности под самые разные сервисы и цели, да и в процессе достижения какой-нибудь одной из них приходится иметь дело с целым набором подзадач. Как дата-центру справиться с потоком желающих что-нибудь проанализировать или посчитать? Поступающие заказы на вычисления нужно выполнять в некотором порядке, стараясь никого не обделить ресурсами. Эта лекция — об основных методах распределения реальных задач на большом кластере. Способ, о котором рассказал Игнат Колесниченко, применяется для обслуживания почти всех сервисов Яндекса.

Игнат — руководитель одной из групп в нашей службе технологий распределенных вычислений. Окончил мехмат МГУ и Школу анализа данных, в Яндексе с 2009 года.

Под катом — подробная расшифровка лекции и слайды.
Читать полностью »

Подготовка релиза картографических данных включают в себя запуск массовой обработки данных. Некоторые задачи хорошо ложатся на идеологию Map-Reduce. В этом случае задача инфраструктуры традиционно решается использованием Hadoop или YT

В реальности часть задач таковы, что разбиение их на маленькие подзадачи невозможно, или нецелесообразно (из-за наличия существующего решения и дорогой разработки, например). Для этого мы в Яндекс.Картах разработали и используем свою систему планирования и выполнения взаимосвязанных задач. Одним из элементов такой системы является планировщик, запускающий задачи на кластере с учетом доступных ресурсов.
Workflow Graph

Эта статья о том как мы решили эту задачу с использованием Apache Mesos.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js