Рубрика «Распределение данных»

Cтатистика Байеса в ML для самых маленьких - 1

Байесовская статистика — это что-то вроде античного оракула в современном мире данных. Она не просто предсказывает будущее, она делает это с потрясающей уверенностью, опираясь на всё, что знает (или думает, что знает) о прошлом. Представьте себе модель машинного обучения, которая не довольствуется лишь холодными числами и вероятностями, полученными из текущих данных. 

Читать полностью »

Как понять, что выборка данных принадлежит определенному распределению? Есть 2 метода: аналитический тест Колмогорова-Смирнова (тест Шапиро-Уилка для нормального) и графический метод при помощи графика квантиль-квантиль плот.

Чем так замечателен второй вариант? Q-Q plot позволяет кроме принадлежности:

  • оценить степень отклонения данных от теоретического распределения

  • графически проиллюстрировать такие параметры как расположение данных, масштаб и скошенность. Читаем: медиану, дисперсию и наклон функции плотности распределения.

  • сравнить две выборки между собой

  • Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js