Технологии автоматического обнаружения и распознавания лица используются в ряде систем компьютерного зрения: биометрическая идентификация, человеко-машинный интерфейс, зрения роботов, компьютерная анимация, системы идентификации и детекционирования в фото-видео камерах и так далее. Основное отличие данных приложений между собой – это целевые классы, которые являются объектами распознавания. Целевыми классами в задачи распознавания могут являться: лицо с элементами перекрытий, изображение лица человека, живое лицо человека, мимика лица, черты лица, пол, раса, возраст, личность человека и другие характеристики. Для удобства выделим целевые классы в отдельные группы, которые при попытке построения автоматической системы обнаружения лица образуют сложности:
— Сильно варьирующийся внешний вид лица у разных людей;
— Даже относительно небольшое изменение ориентации лица относительно камеры влечет за собой серьезное изменение изображения лица;
— Возможное присутствие индивидуальных особенностей (усы, борода, очки, морщины и так далее), которые существенно осложняют автоматическое распознавание;
— Изменение выражения лица может сильно сказаться на том, как лицо выглядит на изображении;
— Условия съемки (освещение, цветовой баланс камеры, искажения изображения, привносимые оптикой системы, качество изображения) в значительной степени влияют на получающееся изображение лица[1].
Задача обнаружения на изображении является первым шагом, предобработкой в процессе решения задачи «более высокого уровня» (например узнавание лица, распознавание выражения лица и так далее). Существующие алгоритмы обнаружения лица можно разбить на две категории: методы эмпирического распознавания и методы моделирования изображения лица. К первой категории относятся методы, отталкивающиеся от опыта человека в распознавании лиц и делающие попытку формализовать и алгоритмизовать этот опыт. Вторая категория нацелена на инструментарий распознавания образов, рассматривая задачу обнаружения лица как частный случай общей задачи распознавания. По набору тренировочных изображений строится модель изображения лица, и задача обнаружения сводится к проверке входного изображения на удовлетворение полученной модели.
Читать полностью »